【题目】已知向量 =(2cosx,t)(t∈R), =(sinx﹣cosx,1),函数y=f(x)= ,将y=f(x)的图象向左平移 个单位长度后得到y=g(x)的图象且y=g(x)在区间[0, ]内的最大值为 .
(1)求t的值及y=f(x)的最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,若 g( ﹣ )=﹣1,a=2,求BC边上的高的最大值.
【答案】
(1)解:∵ =(2cosx,t), =(sinx﹣cosx,1),
∴函数y=f(x)= =2sinxcosx﹣2cos2x+t=sin2x﹣cos2x+t﹣1= sin(2x﹣ )+t﹣1,
将y=f(x)的图象向左平移 个单位长度后,得g(x)= sin2x+t﹣1的图象,
当0≤x≤ 时,0≤2x≤ ,
∴ ,得t=1.
∴f(x)= sin(2x﹣ ),
最小正周期T=
(2)解:∵ g( ﹣ )=﹣1,
∴ g( ﹣ )=2[sin(A﹣ )=﹣2cosA=﹣1,
解得:cosA= ,
故A= ,
又∵a=2,
此时△ABC的外接圆O中,a边2所对的圆角角为 ,
故当△ABC为等边三角形时,
a边上的高取最大值
【解析】(1)利用两个向量数量积公式和辅助角公式推知f(x)= sin(2x﹣ )+t﹣1,由此求得该函数的最小正周期;根据三角函数的恒等变换求得函数g(x)= sin2x+t﹣1,根据正弦函数的值域的求法可以得到t的值;(2)由 g( ﹣ )=﹣1求得A,再结合正弦定理和余弦定理求BC边上的高的最大值.
科目:高中数学 来源: 题型:
【题目】设△ABC是边长为4的正三角形,点P1 , P2 , P3 , 四等分线段BC(如图所示)
(1)P为边BC上一动点,求 的取值范围?
(2)Q为线段AP1上一点,若 =m + ,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)为偶函数,且满足f(x)=f(x+2),f(﹣1)=1,若数列{an}的前n项和Sn满足2Sn=an+1 , a1= ,则f(a5)+f(a6)=( )
A.4
B.2
C.1
D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.
(1)证明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了所学校,并组织专家对两个必检指标进行考核评分.其中分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为(优秀)、(良好)、(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为等级的共有所学校.已知两项指标均为等级的概率为0.21.
(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面列联表,并根据列联表判断是否有的把握认为“学校的基础设施建设”和“学校的师资力量”有关;
师资力量(优秀) | 师资力量(非优秀) | 合计 | |
基础设施建设(优秀) | |||
基础设施建设(非优秀) | |||
合计 |
(2)在该样本的“学校的师资力量”为等级的学校中,若,记随机变量,求的分布列和数学期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系.
(1) 请根据上表提供的数据,用最小二乘法求出关于的线性回归方程 ;
(2) 估计使用年限为10年时,试求维修费用约是多少?(精确到两位小数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 | |
男大学生 | 610 | ||
女大学生 | 90 | ||
合计 | 800 |
(1)根据题意完成表格;
(2)是否有的把握认为愿意做志愿者工作与性别有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.
(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由线面平行的性质定理可得,据此可知四边形BCDM为平行四边形,据此可得.
(Ⅱ)由几何关系,在平面内过点作直线于点,以点E为坐标原点,EA方向为X轴,EC方向为Y轴,ES方向为Z轴建立空间坐标系,据此可得平面的一个法向量,平面的一个法向量,据此计算可得二面角余弦值为.
(Ⅰ)因为平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以,
因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.
因为 .
(Ⅱ)因为 , ,所以平面,又因为平面,
所以平面平面,平面平面,
在平面内过点作直线于点,则平面,
在和中,因为,所以,
又由题知,所以所以,
以下建系求解.以点E为坐标原点,EA方向为X轴,EC方向为Y轴,ES方向为Z轴建立如图所示空间坐标系,
则,,,,,
,,,,
设平面的法向量,则,所,
令得为平面的一个法向量,
同理得为平面的一个法向量,
,因为二面角为钝角.
所以二面角余弦值为.
【点睛】
本题考查了立体几何中的判断定理和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.
【题型】解答题
【结束】
19
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;
(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(,](n=1,2,3,4,5)时,日平均派送量为50+2n单.若将频率视为概率,回答下列问题:
①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。
(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+2|.
(1)当a=1 时,求不等式f(x)≤5的解集;
(2)x0∈R,f(x0)≤|2a+1|,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com