【题目】在平面直角坐标系中,直线截以坐标原点为圆心的圆所得的弦长为.
(1)求圆的方程;
(2)若直线与圆切于第一象限,且与坐标轴交于点,,当时,求直线的方程;
(3)设,是圆上任意两点,点关于轴的对称点为,若直线,分别交轴于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.
【答案】(1);(2);(3)见解析
【解析】
(1)利用点到直线距离公式,可以求出弦心距,根据垂径定理结合勾股定理,可以求出圆的半径,进而可以求出圆的方程;
(2)设出直线的截距式方程,利用圆的切线性质,得到一个方程,结合已知,又得到一个方程,两个方程联立,解方程组,即可求出直线直线的方程;
(3)设,,则,,,分别求出直线与轴交点坐标、直线与轴交点坐标,求出的表达式,通过计算可得.
(1)因为点到直线的距离为,
所以圆的半径为,
故圆的方程为.
(2)设直线的方程为,即,
由直线与圆相切,得,①
.②
由①②解得,
此时直线的方程为.
(3)设,,则,,,
直线与轴交点坐标为,,
直线与轴交点坐标为,,
,为定值2.
科目:高中数学 来源: 题型:
【题目】已知圆,圆与圆关于直线对称.
(1)求圆的方程;
(2)过直线上的点分别作斜率为的两条直线,使得被圆截得的弦长与被圆截得的弦长相等.
(i)求的坐标;
(ⅱ)过任作两条互相垂直的直线分别与两圆相交,判断所得弦长是否恒相等,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为 ,则m的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ex﹣ax2﹣2x+b(e为自然对数的底数,a,b∈R).
(Ⅰ)设f′(x)为f(x)的导函数,证明:当a>0时,f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合条件的最小整数b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)用二次函数回归模型拟合与的关系,可得回归方程:,
经计算二次函数回归模型和线性回归模型的分别约为和,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.
参数数据及公式:,,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.
(1)求椭圆的方程;
(2)椭圆,设过点斜率存在且不为0的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中装有除颜色外其他均相同的编号为a,b的两个黑球和编号为c,d,e的三个红球,从中任意摸出两个球.
(1)求恰好摸出1个黑球和1个红球的概率:
(2)求至少摸出1个黑球的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com