精英家教网 > 高中数学 > 题目详情

如图,已知抛物线C1:x2=2py的焦点在抛物线C2数学公式上.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过抛物C1上的动点P作抛物线C2的两条切线PM、PN,切点M、N.若PM、PN的斜率积为m,且m∈[2,4],求|OP|的取值范围.

解:(Ⅰ)C1的焦点为F(0,),
所以=0+1,p=2.
故C1的方程为x2=4y,其准线方程为y=-1.
(Ⅱ)任取点P(2t,t2),设过点P的C2的切线方程为y-t2=k(x-2t).
,得x2-2kx+4tk-2t2+2=0.
由△=(2k)2-4(4tk-2t2+2)=0,化简得k2-4tk+2t2-2=0,
记PM,PN的斜率分别为k1,k2,则m=k1k2=2t2-2,
因为m∈[2,4],所以t2∈[2,3],
所以|OP|2=4t2+t4=(t2+2)2-4∈[12,21],
所以|OP|∈[].
分析:(Ⅰ)写出C1的焦点为F(0,),代入抛物线C2方程即可求得p值,从而可得抛物线C1的方程及其准线方程;
(Ⅱ)任取点P(2t,t2),设过点P的C2的切线方程为y-t2=k(x-2t).联立切线方程与抛物线C2的方程,消掉y得x的二次方程,由相切得△=0,整理为关于k的二次方程,设PM,PN的斜率分别为k1,k2,由韦达定理可用t表示出m,根据m范围可得t2范围,由两点距离公式可得|OP|的范围;
点评:本题考查抛物线方程、直线方程及直线与抛物线的位置关系,本题中P点坐标设法运用了抛物线的参数方程,简化了运算,给解决问题提供了方便.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉兴二模)如图,已知抛物线C1x2=2py的焦点在抛物线C2:y=
12
x2+1
上,点P是抛物线C1上的动点.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过点P作抛物线C2的两条切线,M、N分别为两个切点,设点P到直线MN的距离为d,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)如图,已知抛物线C1:x2=2py的焦点在抛物线C2y=
12
x2+1
上.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过抛物C1上的动点P作抛物线C2的两条切线PM、PN,切点M、N.若PM、PN的斜率积为m,且m∈[2,4],求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C1:x2=2py(p>0)与圆C2x2+y2=
16
9
交于M、N两点,
且∠MON=120°.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)设直线l与圆C2相切.
(ⅰ)若直线l与抛物线C1也相切,求直线l的方程;
(ⅱ)若直线l与抛物线C1交与不同的A、B两点,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届江西吉安二中高二月考文科数学试卷(解析版) 题型:解答题

(14分)如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0).

(1)证明:(a+1)(y0+1)=1

(2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.

 

查看答案和解析>>

科目:高中数学 来源:2011年福建省南平市高三适应性考试数学试卷(理科)(解析版) 题型:解答题

如图,已知抛物线C1:x2=2py(p>0)与圆交于M、N两点,
且∠MON=120°.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)设直线l与圆C2相切.
(ⅰ)若直线l与抛物线C1也相切,求直线l的方程;
(ⅱ)若直线l与抛物线C1交与不同的A、B两点,求的取值范围.

查看答案和解析>>

同步练习册答案