精英家教网 > 高中数学 > 题目详情

【题目】已知集合M={x|x2﹣4x+3<0},N={x||x﹣3|≤1}.
(1)求出集合M,N;
(2)试定义一种新集合运算△,使M△N={x|1<x<2};
(3)若有P={x|| |≥ },按(2)的运算,求出(N△M)△P.

【答案】
(1)解:M={x|x2﹣4x+3<0}={x|1<x<3},N={x||x﹣3|≤1}={x|2≤x≤4}
(2)解:M△N中的元素都在M中但不在N中,

∴定义M△N={x|x∈M且xN}


(3)解:P={x|| |≥ }=(2.5,3.5],

∵N△M={x|3≤x≤4},

∴(N△M)△P={x|3≤x≤4}


【解析】(1)利用不等式的解法,求出集合M,N;(2)M△N中的元素都在M中但不在N中;(3)P={x|| |≥ }=(2.5,3.5],按(2)的运算,即可求出(N△M)△P.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)若A∩B=B,求m的取值范围;
(2)若A∩B≠,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥V﹣ABCD中,底面ABCD是正方形,侧棱VA⊥底面ABCD,点E为VA的中点.
(Ⅰ)求证:VC∥平面BED;
(Ⅱ)求证:平面VAC⊥平面BED.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请200名同学,每人随机写下一个都小于1的正实数对(xy);再统计两数能与1构成钝角三角形三边的数对(xy)的个数m;最后再根据统计数m来估计的值.假如统计结果是m=56,那么可以估计__________.(用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|ax2﹣3x+2=0,a∈R}有且仅有两个子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最大值和最小值;

(2)设曲线轴正半轴的交点为处的切线方程为,求证:对于任意的正实数,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.

(1)求椭圆的标准方程;

(2)是否存在经过点且斜率为的直线与椭圆交于不同两点,使得向量共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R,ab≠0,给出下面四个命题:①a2+b2≥﹣2ab;② ≥2;③若a<b,则ac2<bc2;④若 .则a>b;其中真命题有(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+e﹣x , 其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案