(湖北卷文18)如图,在直三棱柱中,平面侧面
(Ⅰ)求证:
(Ⅱ)若,直线AC与平面所成的角为,二面角
解:(Ⅰ)证明:如右图,过点A在平面A1ABB1内作AD⊥A1B于D,则
由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,
得AD⊥平面
A1BC.又BC平面A1BC 所以AD⊥BC.
因为三棱柱ABC-A1B1C1是直三棱柱,则AA1⊥底面ABC,所以AA1⊥BC.
又AA1∩AD=A,从而BC⊥侧面A1ABB1,
又AB侧面A1ABB1,故AB⊥BC.
(Ⅱ)证法1:连接CD,则由(Ⅰ)知∠ACD就是直线AC与平面A1BC所成的角,∠ABA1就是二面角A1-BC-A的颊角,即∠ACD=θ,∠ABA1.=
于是在RtΔADC中,sinθ=,在RtΔADA1中,sin∠AA1D=,
∴sinθ=sin∠AA1D,由于θ与∠AA1D都是锐角,所以θ=∠AA1D.
又由RtΔA1AB知,∠AA1D+=∠AA1B+=,故θ+=.
证法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.
设AB=c(c<a=,则B(0,0,0),A(0,c,0),C(),
A1(0,c,a),于是,=(0,c,a),
c,a
设平面A1BC的一个法向量为n=(x,y,z),
则由
可取n=(0,-a,c),于是
n·=ac>0,与n的夹角为锐角,则与互为余角
==cossin,
=cos
所以=sin(=cossin),又0<,<,所以=+.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com