精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx.
(I)证明函数g(x)=f(x)-
2(x-1)
x+1
在x∈(1,+∞)上是单调增函数;
(II)若不等式1-x2≤f(e1-2x)+m2-2bm-2,当b∈[-1,1]{
1
Sn-S1
}(n∈N*,n≥3)
时恒成立,求实数m的取值范围.
分析:(I)求出g(x)的导函数,判断出当x>1时,导数大于0得到g(x)在x∈(1,+∞)上是单调增函数.
(II)将原不等式变形为m2-2bm-2≥1-(x-1)2在b∈[-1,1]时恒成立,求出1-(x-1)2的最大值为1,令m2-2bm-3≥0在b∈[-1,1]时恒成立,将此不等式看成关于b的一次不等式,令其两个端点大于等于0即可.
解答:解:(I)∵g′(x)=
1
x
-
2(x+1)-2(x-1)
(x+1)2
=
(x-1)2
x(x+1)2

当x>1时,g'(x)>0,
∴g(x)在x∈(1,+∞)上是单调增函数.
(II)∵f(e1-2x)=lne1-2x=1-2x,
∴原不等式即为m2-2bm-2≥1-(x-1)2在b∈[-1,1]时恒成立.
∵1-(x-1)2的最大值为1,
∴m2-2bm-3≥0在b∈[-1,1]时恒成立.
令Q(b)=m2-2bm-3,则Q(-1)≥0,且Q(1)≥0.
由Q(-1)≥0,m2+2m-3≥0,解得m≥1或m≤-3.
由Q(1)≥0,m2-2m-3≥0,解得m≥3或m≤-1.
∴综上得,m≥3或m≤-3.
点评:解决不等式恒成立求参数的范围问题,应该分离出参数,构造函数转化为求函数的最值进行解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案