精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数.

1)讨论的单调性;

2)证明:当时,.

3)证明:当时,.

【答案】(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析

【解析】

1)求出的定义域,导函数,对参数分类讨论得到答案.

(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.

3)由(1)可知,可得,即即可得证.

1)解:的定义域为

时,,则上单调递增;

时,令,得,令,得,则上单调递减,在上单调递增;

时,,则上单调递减;

时,令,得,令,得,则上单调递增,在上单调递减;

2)证明:设函数,则.

因为,所以

,从而上单调递减,

所以,即.

3)证明:当时,.

由(1)知,,所以

.

时,

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份新冠肺炎疫情得到了控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从27日到213日一周的新增新冠肺炎确诊人数的折线图如下:

根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,两点分别在线段上运动,且.将三角形沿折起,使点到达的位置,且平面平面.

1)判断直线与平面的位置关系并证明;

2)证明:的长度最短时,分别为的中点;

3)当的长度最短时,求平面与平面所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,,点分别为的中点.

(1)证明:平面∥平面

(2)若,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,设函数在区间上的最小值为,求

(2)设,若函数有两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,平面ABCD⊥平面BCEBE⊥EC.

(1)求证:平面AEC⊥平面ABE

(2)FBE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:

根据该折线图可知,下列说法错误的是( )

A. 该超市2018年的12个月中的7月份的收益最高

B. 该超市2018年的12个月中的4月份的收益最低

C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益

D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元

查看答案和解析>>

同步练习册答案