精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.
(1)设A(x1,y1),B(x2,y2),P(x,y),
x21
4
+
y21
=1,(1)
x22
4
+
y22
=1,(2)

(1)-(2),得
(x1-x2)(x1+x2)
4
+(y1-y2)(y1+y2)=0

x
4
+
y
x+1
•y=0
,即x2+x+4y2=0
(2)设A(x1,y1),B(x2,y2),则
令l:x=hy-1代入x2+4y2=4,得(4+h2)y2-2hy-3=0,△=16(h2+3)>0,
y1+y2=
2h
4+h2
,y1y2=-
3
4+h2

S=
1
2
•|OM|•|y1-y2|=
1
2
4+h2
=
2
h2+3
h2+4

h2+3
=t≥
3
,则S=
2t
t2+1
=
2
t+
1
t
[
3
,+∞)
上单调递减,
t=
3
,即h=0时,Smax=
3
2
,此时l:x=-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设直线l交曲线C于A,B两点,线段AB的中点为D(2,-1),求直线l的一般式方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)上横坐标为1的点M到抛物线C焦点F的距离|MF|=2.
(1)试求抛物线C的标准方程;
(2)若直线l与抛物线C相交所得的弦的中点为(2,1),试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
4
+
y2
2
=1
,过程P(1,1)作直线l,与椭圆交于A,B两点,且点P是线段AB的中点,则直线l的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:x2-
y2
2
=1
,过点P(-1,-2)的直线交C于A,B两点,且点P为线段AB的中点.
(1)求直线AB的方程;
(2)求弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,离心率e=
1
2
,一个顶点的坐标为(0,
3
)

(1)求椭圆C的方程;
(2)椭圆C的左焦点为F,右顶点为A,直线l:y=kx+m与椭圆C相交于M,N两点且
AM
AN
=0
,试问:是否存在实数λ,使得S△FMN=λS△AMN成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点M(
3
,0),椭圆
x2
4
+y2=1与直线y=k(x+
3
)交于点A、B,则△ABM的周长为(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直线y=x-2上是否存在点P,使得经过点P能作出抛物线y=
1
2
x2
的两条互相垂直的切线?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线
x2
v
-
y2
图6
=图
的右焦点是抛物线的焦点,则抛物线的标准方程是______.

查看答案和解析>>

同步练习册答案