精英家教网 > 高中数学 > 题目详情
8.已知$\overrightarrow{a}$=(2,-1,1),$\overrightarrow{b}$=(-1,1,-2),$\overrightarrow{c}$=(3,2,λ),若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$三向量共面,则实数λ等于(  )
A.-9B.-7C.1D.19

分析 $\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$三向量共面,可得存在实数m,n,使得$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$,利用向量相等即可得出.

解答 解:∵$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$三向量共面,
∴存在实数m,n,使得$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$,
∴(3,2,λ)=m(2,-1,1)+n(-1,1,-2),
∴$\left\{\begin{array}{l}{3=2m-n}\\{2=-m+n}\\{λ=m-2n}\end{array}\right.$,解得λ=-9.
故选:A.

点评 本题考查了向量共面基本定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x≥0}\\{2x+3,x<0}\end{array}\right.$,则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,圆锥SO的内接圆柱OO′的上底面经过高SO的中点O′,下底面在圆锥SO的底面上,设圆柱OO′的体积为V1,圆锥SO的体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$=$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a1=1,且an+1=3an+2•3n,(n∈N+),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系t=$\left\{\begin{array}{l}{64,x≤0}\\{{2}^{kx+6},x>0}\end{array}\right.$且该食品在4℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,给出以下四个结论:
①该食品在6℃的保鲜时间是8小时;
②当x∈[-6,6]时,该食品的保鲜时间t随看x增大而逐渐减少;
③到了此日13时,甲所购买的食品还在保鲜时间内;
④到了此日14时,甲所购买的食品已然过了保鲜时间
其中,所有正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.利用单位圆,求使下列不等式成立的x的范围
(1)cosx≥$\frac{\sqrt{2}}{2}$
(2)tanx≤1 
(3)sinx≤-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a≠0,函数f(x)=$\left\{\begin{array}{l}{4lo{g}_{2}(-x),x<0}\\{|{x}^{2}-ax|,x≥0}\end{array}\right.$,若f[f(-$\sqrt{2}$)]=4,则f(a)=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设条件p:2x2-3x+1>0,条件q:$\frac{1}{x}$<1,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱柱ABC-A1B1C1中,已知A1在底面ABC内的射影是线段BC的中点,且A1O=OC,BC⊥AA1
(1)证明:四边形ABB1A1是菱形;
(2)若A1O=OC=2,AO=1,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案