精英家教网 > 高中数学 > 题目详情
20.函数f(x)=$\frac{xln(x-2015)}{x-2016}$的零点个数为(  )
A.1B.2C.3D.0

分析 由$\left\{\begin{array}{l}{xln(x-2015)=0}\\{x-2016≠0}\\{x-2015>0}\end{array}\right.$,解得x即可得出.

解答 解:由$\left\{\begin{array}{l}{xln(x-2015)=0}\\{x-2016≠0}\\{x-2015>0}\end{array}\right.$,解得x∈∅,
因此函数f(x)无零点.
故选:D.

点评 本题考查了函数的零点,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x(x2-a)+$\frac{1}{x}$.
(1)证明:对任意a∈R,都有导函数f′(x)是偶函数;
(2)若g(x)=f(x)-$\frac{1}{x}$-$\frac{1}{9}$lnx,且a<0,讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列四个命题:
(1)“?x∈R,x2-x+1≤0”的否定;
(2)“若x2+x-6≥0,则x>2”的否命题;
(3)在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充分不必要条件;
(4)“k=2”是“函数f(x)=2x-(k2-3)•2-x为奇函数”的充要条件.
其中真命题的序号是(1),(2)(真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察下面几个算式,找出规律:
1+2+1=4;   
1+2+3+2+1=9;   
1+2+3+4+3+2+1=16;
1+2+3+4+5+4+3+2+1=25;

利用上面的规律,请你算出1+2+3+…+99+100+99+…+3+2+1=10000.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=acosx+xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$].当1<a<2时,则函数f(x)极值点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}中,a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式为(  )
A.2n-1B.nC.${(\frac{n+1}{n})^{n-1}}$D.n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某学校安排3位老师与5名学生去3地参观学习,每地至少去1名老师和1名学生,则不同的安排方法总数为(  )
A.1800B.900C.300D.1440

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个说法:其中正确说法的个数是(  )个
①方程x2+2x-7=0的两根之和为-2,两根之积为-7;
②方程x2-2x+7=0的两根之和为-2,两根之积为7;
③方程3x2-7=0的两根之和为0,两根之积为$-\frac{7}{3}$;
④方程3x2+2x=0的两根之和为-2,两根之积为0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-1≤x<2},B={x|-x≥0},则A∩B等于(  )
A.{x|0≤x<2}B.{x|-2<x≤-1}C.{x|-2<x≤0}D.{x|-1≤x≤0}

查看答案和解析>>

同步练习册答案