精英家教网 > 高中数学 > 题目详情
如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.将△ABD沿对角线BD折起(图2),记折起后点A的位置为P且使平面PBD⊥平面BCD.
(1)求三棱锥P-BCD的体积;
(2)求平面PBC与平面PCD所成二面角的平面角的大小.

【答案】分析:(1)由题意证明PE为三棱锥P-BCD的高,由原图形可得三角形BDC为等腰直角三角形,求出其面积,则三棱锥P-BCD的体积可求;
(2)由(1)的求解过程知道PE⊥BD,DC⊥BD,过E作DC的平行线后以E点为坐标原点建立空间直角坐标系,求出平面PBC与平面PCD的法向量,由平面法向量求平面PBC与平面PCD所成二面角的平面角的大小.
解答:解:(1)∵平面PBD⊥平面BCD,PE⊥BD,PE?平面PBD,平面PBD∩平面BCD=BD,
∴PE⊥平面BCD,
即PE是三棱锥P-BCD的高,
又∵AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,
∴∠ABD=∠CBD=45°,∠BDC=90°,

∴三棱锥P-BCD的体积
(2)过E作直线EG∥DC,交BC于G,则EG⊥BD,EG⊥PE
如图建立空间直角坐标系,

.
设平面PBC的法向量为=(x,y,z),
,即,化简得
令x=1,得z=1,y=1,所以=(1,1,1)是平面PBC的一个法向量.
再设
,即,化简得
令x1=1,得y1=0,z1=-1,所以平面PCD的一个法向量为=(1,0,-1).
设向量所成角为θ,则
∴平面PBC与平面PCD所成二面角的平面角的大小为90°.
点评:本题考查了棱锥的体积的求法,考查了二面角的平面角及求法,综合考查了学生的空间想象能力和思维能力,解答此题时一定要注意折叠前后的变量与不变量,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.将△ABD沿对角线BD折起(图2),记折起后点A的位置为P且使平面PBD⊥平面BCD.
(1)求三棱锥P-BCD的体积;
(2)求平面PBC与平面PCD所成二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿对角线AC折起到△PAC的位置,如图2所示,使得点P在平面ABC上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,PB的中点.
(Ⅰ)求证:平面EFH∥平面PBC;
(Ⅱ)求直线HE与平面PHB所成角的正弦值;
(Ⅲ)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
12
AB=2
,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(1)求证:DA⊥BC;
(2)在CD上找一点F,使AD∥平面EFB;
(3)求点A到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,CD=6,AD=3,E为CD上一点,且DE=4,过E作EF∥AD交BC于F现将△CEF沿EF折起到△PEF,使∠PED=60°,如图2.
(Ⅰ)求证:PE⊥平面ADP;
(Ⅱ)求异面直线BD与PF所成角的余弦值;
(Ⅲ)在线段PF上是否存在一点M,使DM与平在ADP所成的角为30°?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案