精英家教网 > 高中数学 > 题目详情
(2013•福建)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=
2
2
3
,AB=3
2
,AD=3,则BD的长为
3
3
分析:由∠BAC=∠BAD+∠DAC,∠DAC=90°,得到∠BAC=∠BAD+90°,代入并利用诱导公式化简sin∠BAC,求出cos∠BAD的值,在三角形ABD中,由AB,AD及cos∠BAD的值,利用余弦定理即可求出BD的长.
解答:解:∵AD⊥AC,∴∠DAC=90°,
∴∠BAC=∠BAD+∠DAC=∠BAD+90°,
∴sin∠BAC=sin(∠BAD+90°)=cos∠BAD=
2
2
3

在△ABD中,AB=3
2
,AD=3,
根据余弦定理得:BD2=AB2+AD2-2AB•AD•cos∠BAD=18+9-24=3,
则BD=
3

故答案为:
3
点评:此题考查了余弦定理,诱导公式,以及垂直的定义,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•福建)如图,在四棱柱P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(I)当正视方向与向量
AD
的方向相同时,画出四棱锥P-ABCD的正视图(要求标出尺寸,并写出演算过程);
(II)若M为PA的中点,求证:DM∥平面PBC;
(III)求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)如图,在等腰直角△OPQ中,∠POQ=90°,OP=2
2
,点M在线段PQ上,
(Ⅰ)若OM=
5
,求PM的长;
(Ⅱ)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10),分别将线段OA和AB十等分,分点分别记为A1,A2,…,A9和B1,B2,…,B9,连接OBi,过Ai作x轴的垂线与OBi,交于点
P
 
i
(i∈N*,1≤i≤9)

(1)求证:点
P
 
i
(i∈N*,1≤i≤9)
都在同一条抛物线上,并求抛物线E的方程;
(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积之比为4:1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求证:CD⊥平面ADD1A1
(2)若直线AA1与平面AB1C所成角的正弦值为
67
,求k的值
(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)

查看答案和解析>>

同步练习册答案