分析 利用(5+3d)2=5(5+15d)可知公差d=5.
(1)利用等差数列的求和公式计算即得结论;
(2)通过d=5可知b3的值,进而可得公比,问题即求不等式5•2n-1≤$\frac{25250}{2}$的最大整数解,计算即可;
(3)假设Sm=TN,即5m+$\frac{m(m-1)}{2}$×5=5(212-1),计算即得结论.
解答 解:设等差数列{an}的公差为d,
则b1=a1=5,b3=a4=5+3d,b5=a16=5+15d,
∴(5+3d)2=5(5+15d),
解得d=5或d=0(舍).
(1)S=100×5+$\frac{100×99}{2}×5$=25250;
(2)∵d=5,∴b3=5+3d=20,
∵bn>0,∴公比q=$\sqrt{\frac{{b}_{3}}{{b}_{1}}}$=$\sqrt{\frac{20}{5}}$=2,
∴bn=5•2n-1,
令5•2n-1≤$\frac{25250}{2}$,即2n≤5050,
又∵212<5050<213,即n<13,
且212=4096<5050,
∴N的最大值为12;
(3)结论:存在自然数m=90,使S90=T12.
理由如下:
∵b1=a1=5,d=5,q=2,
∴Sm=TN,即5m+$\frac{m(m-1)}{2}$×5=5(212-1),
整理得:m2+m-8190=0,
解得m=90或-91(舍),
故存在自然数m=90,使S90=T12.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{ab}>\frac{1}{2}$ | B. | a2+b2≥8 | C. | $\sqrt{ab}$≥2 | D. | $\frac{1}{a}+\frac{1}{b}$≤1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com