精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-x+
3
2

(Ⅰ)写出函数f(x)的图象的顶点坐标及其单调递增、递减区间;
(Ⅱ)若函数的定义域和值域都是[1,a](a>1),求a的值.
分析:(Ⅰ)直接对函数进行配方即可得到丁点坐标,再根据开口向上的二次函数在对称轴左边递减右边递增即可得到其单调区间;
(Ⅱ)根据其对称轴为X=1,可得函数在[1,a]上递增,进而得到其最大值在X=a处取得,得到关于a的等式即可求出a的值.
解答:解:(Ⅰ)∵f(x)=
1
2
x2-x+
3
2

=
1
2
(x-1)2+1;
∴顶点坐标:(1,1)
又开口向上;所以在[1,+∞)上递增;在(-∞,1]上递减.
(Ⅱ)∵其对称轴为X=1,
∴函数在[1,a]上递增;
∴当x=1时有最小值1,当x=a时有最大值a.
1
2
a2-a+
3
2
=a⇒a2-4a-3=0⇒a=3或a=1(舍).
∴a=3.
点评:本题主要考察二次函数在闭区间上的最值问题.求二次函数在闭区间上的最值时,一定要注意讨论对称轴和区间的位置关系,避免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案