精英家教网 > 高中数学 > 题目详情
14.已知集合M={x|4≤x≤7},N={3,5,8},则M∩N={5}.

分析 由M与N,求出两集合的并集即可.

解答 解:∵M={x|4≤x≤7},N={3,5,8},
∴M∩N={5},
故答案为:{5}.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知方程$\frac{x^2}{m}+\frac{y^2}{m-4}=1$表示焦点在x轴上的双曲线,则m的取值范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x+1|+|x-1|.
(1)若?x0∈R,使得不等式f(x0)≤m成立,求实数m的最小值M;
(2)在(1)的条件下,若正数a,b满足3a+b=m,求$\frac{1}{2a}+\frac{1}{a+b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|-1<x<4},$B=\left\{{x\left|{-5<x<\frac{3}{2}}\right.}\right\}$,C={x|1-2a<x<2a}.
(1)求A∩B,A∪B;
(2)若集合C=∅,求实数a的取值范围;
(3)若C⊆(A∩B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n∈N*),
(1)求使anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;
(2)求数列{bn}的前n项和Sn
(3)试证明:当q≥2时,对任意正整数n≥2,Sn不可能是数列{bn}中的某一项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={0,2,4,6},B={n∈N|2n<8},则集合A∩B的子集个数为(  )
A.8B.7C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设p:x<3,q:-1<x<3,则¬q是¬p成立的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3+x2+mx+1在区间(-1,2)上不是单调函数,则实数m的取值范围是(  )
A.(-∞,-16)∪($\frac{1}{3}$,+∞)B.[-16,$\frac{1}{3}$]C.(-16,$\frac{1}{3}$)D.($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.20+3$\sqrt{2}$B.16+8$\sqrt{2}$C.18+3$\sqrt{5}$D.18+6$\sqrt{5}$

查看答案和解析>>

同步练习册答案