精英家教网 > 高中数学 > 题目详情

【题目】四面体及其三视图如图所示,过棱的中点作平行于的平面分别交四面体的棱于点

(1)求证:四边形是矩形;

(2)求点到面的距离.

【答案】(1)详见解析(2)

【解析】

1)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得到四边形为平行四边形,再由线面垂直的判定和性质得到,结合异面直线所成角的概念得到,从而证得结论;

2)利用线面平行时,直线上的点到平面的距离是相等的,将点到面的距离转化为点D到面的距离,求解即可.

(1)证明:由,同理可得

所以

的面,同理可得

所以

所以四边形是平行四边形

由三视图可知,所以,又

所以,所以四边形是矩形

(2)易知点到面的距离即点到面的距离,

所以点到面的距离即点到线的距离

由(1)和的中点可知分别是的中点,

又由三视图可知是等腰直角三角形,

易得点到线的距离为,即点到面的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数是定义在(-1,1)上的奇函数,且

(1)求函数的解析式;

(2)证明函数fx)在(-1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为空间中两条互相垂直的直线,等腰直角三角形的直角边所在直线与都垂直,斜边以直线为旋转轴旋转,有下列结论:

(1)当直线角时,角;

(2)当直线角时,角;

(3)直线所成角的最小值为

(4)直线所成角的最小值为

其中正确的是______(填写所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。

(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?

(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人.

I)求直方图中的值及甲班学生每天平均学习时间在区间的人数;

II)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取记录如下:

甲:

乙:

用茎叶图表示这两组数据.

)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为派哪位学生参加合适?请说明理由

)若将频率视为概率,对甲同学在今后的三次数学竞赛成绩进行预测,记这次成绩中高于分的次数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.

(1)试求y=f(x)的函数关系式;

(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆外切并且与圆内切,圆心轨迹为曲线

(1)求曲线的方程;

(2)若是曲线上关于轴对称的两点,点,直线交曲线

于另一点,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求异面直线A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

同步练习册答案