精英家教网 > 高中数学 > 题目详情

【题目】对于数集,其中, .定义向量集.若对于任意,存在,使得,则称具有性质.例如具有性质.

(1)若,且具有性质,求的值;

(2)若具有性质,求证: ,且当时, .

【答案】(1)4;(2)见解析

【解析】试题分析:(1)在中取,,根据数量积的坐标公式,

结合,可得
2,设,根据,化简可得,所以 异号.而-1是数集中唯一的负数,所以 中的负数必为-1,另一个数是1,从而证出 ,最后通过反证法,可以证明出当当时, .

试题解析:

(1)因为,选取,,由,则.

(2)取,设,

,则,则中有一个数是,

中有一个数是,即,

假设,则,再取, ,则,

所以异号,且其中一个值为,

,则,矛盾;

,则,矛盾;

则假设不成立,可得当时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= , ①若f(a)=14,求a的值
②在平面直角坐标系中,作出函数y=f(x)的草图.(需标注函数图象与坐标轴交点处所表示的实数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中, 平面 .

求四面体的四个面的面积中,最大的面积是多少?

Ⅱ)证明:在线段上存在点,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为提升学生的英语学习能力,进行了主题分别为“听”、“说”、“读”、“写”四场竞赛.规定:每场竞赛的前三名得分分别为 ,且 ),选手的最终得分为各场得分之和.最终甲、乙、丙三人包揽了每场竞赛的前三名,在四场竞赛中,已知甲最终分为分,乙最终得分为分,丙最终得分为分,且乙在“听”这场竞赛中获得了第一名,则“听”这场竞赛的第三名是(

A. B. C. D. 甲和丙都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在由圆O:x2+y2=1和椭圆C: =1(a>1)构成的“眼形”结构中,已知椭圆的离心率为 ,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得 = ,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x+2y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段AB的长为2,动点C满足 (μ为常数,μ>﹣1),且点C始终不在以点B为圆心 为半径的圆内,则μ的范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 ( )

A. 甲地:总体均值为3,中位数为4

B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3

D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 函数 ,其中 ,若函数 恰有4个零点,则 的取值范围是

查看答案和解析>>

同步练习册答案