精英家教网 > 高中数学 > 题目详情
数列{an}中,已知a1=1,a2=0,对任意正整数n、m(n>m),有
a
2
n
-
a
2
m
=an-man+m
,则a2013=
1
1
分析:令n=2,m=1可求得a3=-1,令n>2,m=2,得an2-a22=an-2an+2,整理后可得
an+2
an
=
an
an-2
,从而有
a2013
a2011
=
a2011
a2009
=…=
a3
a1
=-1,相乘即可求得答案.
解答:解:令n=2,m=1,则a22-a12=a1a3
又∴a3=-1,
令n>2,m=2,则an2-a22=an-2an+2
an2=an-2an+2,∴
an+2
an
=
an
an-2

a2013
a2011
=
a2011
a2009
=…=
a3
a1
=-1,
各式相乘,得
a2013
a1
=(-1)1006
=1,
∴a2013=1,
故选答案为:1.
点评:本题考查由数列递推式求数列通项,考查学生分析问题解决问题的能力,解决该题的关键由条件得到递推式
an+2
an
=
an
an-2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科)(1)若数列{an1}是数列{an}的子数列,试判断n1与l的大小关系;
(2)①在数列{an}中,已知{an}是一个公差不为零的等差数列,a5=6.当a3=2时,若存在自然数n1,n2,…,nl,…满足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…是等比数列,试用t表示n1
②若存在自然数n1,n2,…,nl,…满足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…构成一个等比数列.求证:当a3是整数时,a3必为12的正约数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的数列{an}中,已知点(an,an+1)(n∈N*)在函数y=2x的图象上,且a25=8
(1)求证:数列{an}是等比数列,并求出其通项公式;
(2)若数列{bn}的前n项和为Sn,且bn=an+n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=2,a2=3,当n≥2时,an+1是an•an-1的个位数,则a2011=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=2an+2(n∈N*
(Ⅰ)求证:数列{an+2}是等比数列;
(Ⅱ) 求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,a2=5,an+2=an+1-an(n∈N*),则a2011=(  )

查看答案和解析>>

同步练习册答案