【题目】已知函数f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一个负根,求a的取值范围;
(Ⅱ)当x>﹣1时,不等式f(x)≥0恒成立,求a的取值范围.
科目:高中数学 来源: 题型:
【题目】国际油价在某一时间内呈现出正弦波动规律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],现采集到下列信息:最高油价80美元,当t=150(天)时达到最低油价,则ω= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三条不重合的直线 和两个不重合的平面 ,下列命题正确的是( )
A.若 , ,则
B.若 , ,且 ,则
C.若 , ,则
D.若 , ,且 ,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是( )
A.( , )
B.( , ]
C.( , ]
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)当m>﹣ 时,解关于x的不等式(mx+a)(x﹣b)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在区间(﹣1,1)上的增函数f(x)= 为奇函数,且f( )=
(1)求函数f(x)的解析式;
(2)解关于t的不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(1)把直线l的参数方程化为极坐标方程,把曲线C的极坐标方程化为普通方程;
(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com