A. | -2 | B. | 2 | C. | 1 | D. | -1 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点A时,
直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x=0}\\{x+y-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
即A(0,1),
此时z的最大值为z=0+2×1=2,
故选:B.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>3? | B. | a≥3? | C. | a≤3? | D. | a<3? |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com