精英家教网 > 高中数学 > 题目详情
.函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)f(x)的定义域和值域均为[-1,1];(2)f(x)是奇函数;(3)函数在定义域上单调递增;(4)函数f(x)有两零点;(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.则函数f(x)有关性质中正确描述的个数是(  )
分析:求出函数的定义域,化简函数的解析式,作出函数图象,根据函数的图象判断所给性质的正误.
解答:解:∵
x2-x4≥0
|x-2|-2≠0
∴函数定义域为
x|
-1≤x<0或0<x≤1,}
f(x)=
x2(1-x2)
-(x-2)-2
=
|x|
1-x2
-x
=
-
1-x2
        0<x≤1
1-x2
          -1≤x<0

作出函数图象,如图所示
由图象可知函数定义域为[-1,0)∪(0,1],值域为(-1,1)故(1)不正确;
∵函数定义域关于原点对称且
f(-x)=
|-x|
1-(-x)2
-(-x)
=
|x|
1-x2
x
=-f(x)

∴函数f(x)为奇函数,故(2)正确;
由图象可知函数在[-1,0)上为单调增函数,在(0,1]上也是单调增函数,但在定义域上不是增函数,如-1<1,但f(-1)>f(1).故(3)不正确;
由图象可知函数的零点为x=-1,x=1,故(4)正确;
由图象可知图象为两个四分之一个圆弧构成,且半径为1,最大为AB连线过原点时最大为2,最小为
2
,但取不到.
故(5)正确.
故选C.
点评:本题主要考查了函数的性质、函数的图象,并利用函数的图象研究函数的性质,体现了数形结合在数学解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案