精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,其左,右焦点分别为,点P是坐标平面内一点,且,其中O为坐标原点.

1)求椭圆C的方程;

2)过点,且斜率为的动直线l交椭圆于AB两点,求弦AB的垂直平分线在轴上截距的最大值.

【答案】12

【解析】

(1),根据题意列出对应等式,解方程后即可求得ab的值,得到椭圆方程;

(2)设出直线l的方程,代入椭圆方程,利用韦达定理求出中点坐标公式,当直线的斜率存在时,利用直线的点斜式方程,求得AB的垂直平分线方程,y=0,求得x,再利用基本不等式即可得解.

(1)由题知,,

,,

,

,

,从而,,

故椭圆C的方程为;

(2)设直线l的方程为,,,

联立方程:,消去y:,

显然,

,,

,

AB的中点坐标为,

AB的斜率k为零时,AB的垂直平分线为y,横截距为0;

,AB垂直平分线的方程为:,

,

,,

,,那么,

当且仅当,时等号成立,

所以当,AB的垂直平分线在x轴上的截距有最大值,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,几何体AMDCNB是由两个完全相同的四棱锥构成的几何体,这两个四棱锥的底面ABCD为正方形,,平面平面ABCD.

(1)证明:平面平面MDC.

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的直线被曲线截得的弦长为2,则直线的方程为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,底面是边长为的正三角形,是棱的中点,点在棱上,且

(1)求证:平面

(2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形均为正方形,点M的中点,点H在线段上,且与平面所成角的正弦值为.

1)求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)证明:当时,函数有最大值.设的最大值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正四棱锥中, 为底面正方形的重心, 分别为侧棱的中点,有下列结论:

平面;②平面平面;③

④直线与直线所成角的大小为.

其中正确结论的序号是__________.(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案