精英家教网 > 高中数学 > 题目详情

 如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)

(1)求抛物线的解析式

(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.

(3)如图3,抛物线上是否存在一点,过点轴的垂线,垂足为,过点作直线,交线段于点,连接,使,若存在,求出点的坐标;若不存在,说明理由.

       图1                        图2                          图3

 

 

 

 

 

 

【答案】

 解:(1)设所求抛物线的解析式为:,依题意,将点B(3,0)代入,得  解得:a=-1 ∴所求抛物线的解析式为:

    (2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,

    在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①

    设过A、E两点的一次函数解析式为:y=kx+b(k≠0),

    ∵点E在抛物线上且点E的横坐标为2,将x=2代入抛物线,得

   

    ∴点E坐标为(2,3)

    又∵抛物线图像分别与x轴、y轴交于点A、B、D

    ∴当y=0时,,∴x=-1或x=3

    当x=0时,y=-1+4=3,

    ∴点A(-1,0),点B(3,0),点D(0,3) 

    又∵抛物线的对称轴为:直线x=1,   

    ∴点D与点E关于PQ对称,GD=GE…………………②  

分别将点A(-1,0)、点E(2,3)代入y=kx+b,得:

   

   解得: 

过A、E两点的一次函数解析式为:y=x+1

    ∴当x=0时,y=1  

∴点F坐标为(0,1)

=2………………………………………③   

  又∵点F与点I关于x轴对称,  

    ∴点I坐标为(0,-1)   

    ∴………④

  又∵要使四边形DFHG的周长最小,由于DF是一个定值,

    ∴只要使DG+GH+HI最小即可

    由图形的对称性和①、②、③,可知,

    DG+GH+HF=EG+GH+HI

    只有当EI为一条直线时,EG+GH+HI最小

    设过E(2,3)、I(0,-1)两点的函数解析式为:

分别将点E(2,3)、点I(0,-1)代入,得:

     解得:

    过I、E两点的一次函数解析式为:y=2x-1

    ∴当x=1时,y=1;当y=0时,x=;  

    ∴点G坐标为(1,1),点H坐标为(,0)

    ∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI

    由③和④,可知:

    DF+EI=

∴四边形DFHG的周长最小为。 

(3)如图7,由题意可知,∠NMD=∠MDB,  

    要使,△DNM∽△BMD,只要使即可,

    即:………………………………⑤

设点M的坐标为(a,0),由MN∥BD,可得  

  △AMN∽△ABD,

    ∴

再由(1)、(2)可知,AM=1+a,BD=,AB=4

 ∴

 ∵

 ∴⑤式可写成:  

解得 (不合题意,舍去)∴点M的坐标为(,0)

又∵点T在抛物线图像上,

 ∴当x=时,y= ∴点T的坐标为().

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线y=-x2+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点P,则点P落在△AOB内的概率是(  )
A、
5
6
B、
4
5
C、
3
4
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为抛物线y=x2上的动弦,且|AB|=a(a为常数,且a≥1),求弦AB的中点M离x轴的最近距离.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省高一上学期开学考试数学 题型:解答题

(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)

(1)求抛物线的解析式

(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.

(3)如图3,抛物线上是否存在一点,过点轴的垂线,垂足为,过点作直线,交线段于点,连接,使,若存在,求出点的坐标;若不存在,说明理由.

       图1                        图2                          图3

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,抛物线y=x2的动弦AB所在直线与圆x2+y2=1相切,分别过点A、B的抛物线的两条切线相交于点M,求点M的轨迹方程.

(文)已知函数f(x)=x3+(a-1)x2+bx(a、b为常数)在x=1和x=4处取得极值.

(1)求函数f(x)的解析式;

(2)当x∈[-2,2]时,函数y=f(x)的图象在直线5x+2y-c=0的下方,求实数c的取值范围.

查看答案和解析>>

同步练习册答案