精英家教网 > 高中数学 > 题目详情
(2012•肇庆一模)已知向量
a
=(4,3)
b
=(-2,1)
,如果向量
a
b
b
垂直,则|2
a
b
|
的值为(  )
分析:由向量
a
=(4,3),
b
=(-2,1),知
a
b
=(4-2λ,3+λ),由向量
a
b
b
垂直,可得-2(4-2λ)+1×(3+λ)=0,解得λ=1,故2
a
b
=(10,5),由此可求其模长.
解答:解:∵向量
a
=(4,3),
b
=(-2,1),
a
b
=(4-2λ,3+λ),
∵向量
a
b
b
垂直,
∴-2(4-2λ)+1×(3+λ)=0,解得λ=1,
∴2
a
b
=(8,6)-(-2,1)=(10,5),
则|2
a
b
|=
102+52
=5
5

故选D.
点评:本题考查平面向量的坐标运算,是基础题.解题时要认真审题,注意数量积判断两个平面向量的垂直关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知四棱锥P-ABCD如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.
(1)求此四棱锥的体积;
(2)若E是PD的中点,求证:AE⊥平面PCD;
(3)在(2)的条件下,若F是PC的中点,证明:直线AE和直线BF既不平行也不异面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5,
(1)求{an}的通项公式an和前n项和Sn
(2)设Cn=
5-an2
bn=2Cn
,证明数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知数列{an}是一个等差数列,且a2=1,a5=-5.
(Ⅰ)求{an}的通项an
(Ⅱ)设cn=
5-an2
bn=2cn,求T=log2b1+log2b2+log2b3+…+log2bn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知集合M={0,1,2},集合N满足N⊆M,则集合N的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)已知函数f(x)=lgx的定义域为M,函数y=
2x,x>2
-3x+1,x<1
的定义域为N,则M∩N=(  )

查看答案和解析>>

同步练习册答案