精英家教网 > 高中数学 > 题目详情
给出下列命题:
①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;
②命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;
③命题“若a>b>0,则
3a
3b
>0”的逆否命题;
④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.
其中真命题的序号为
 
分析:根据题意,按照要求写出命题①、②、③、④的否命题、逆命题或逆否命题,再判定它们是否正确.
解答:解:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题是“若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”,是正确的;
②命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题是“△ABC是等边三角形,则AB=BC=CA”,是正确的;
③命题“若a>b>0,则
3a
3b
>0”是正确的,∴它的逆否命题也是正确的;
④命题“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题是“若mx2-2(m+1)x+(m-3)>0的解集为R,则m>1”是错误的,
∵不等式的解集为R时,
m>0
4(m+1)2-4m(m-3)<0
的解集为∅,∴逆命题是错误的;
∴正确命题有①②③;
故答案为:①②③.
点评:本题考查了四种命题之间的关系以及命题真假的判定问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济宁一模)给出下列命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命题“若am2<bm2,则a<b”的逆命题是真命题;
③f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2*.则x<0时的解析式为f(x)=-2-x
④若随机变量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是
①③④
①③④
.(写出所有你认为正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①命题“?x∈R,x2-2x-3>0”的否定“?x∈R,x2-2x-3<0”②若命题“?p”为真,命题“p∨q为真,则命题q为真;③若q是q的必要不充分条件,则命题“若p则q”的否命题是真命题,逆否命题是假命题.其中正确命题是
②③
②③
(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)给出下列命题,其中正确的命题是
①③④
①③④
(写出所有正确命题的编号).
①非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|
,则
a
a
+
b
的夹角为30°;
②已知非零向量
a
b
,则“
a
b
>0
”是“
a
b
的夹角为锐角”的充要条件;
③命题“在三棱锥O-ABC中,已知
OP
=x
OA
+y
OB
-2
OC
,若点P在△ABC所在的平面内,则x+y=3”的否命题为真命题;
④若(
AB
+
AC
)•(
AB
-
AC
)=0
,则△ABC为等腰三角形.

查看答案和解析>>

科目:高中数学 来源:2012届山东省济宁市邹城二中高三第二次月考文科数学 题型:填空题

给出下列命题:
命题1:点(1,1)是直线y = x与双曲线y = 的一个交点;
命题2:点(2,4)是直线y = 2x与双曲线y = 的一个交点
命题3:点(3,9)是直线y = 3x与双曲线y = 的一个交点
请观察上面命题,猜想出命题(是正整数)为:                  

查看答案和解析>>

科目:高中数学 来源:2013届山东省冠县一中高二下学期期中学分认定文科数学试卷(解析版) 题型:填空题

给出下列命题:

命题1:点(1,1)是直线y = x与双曲线y = 的一个交点;

命题2:点(2,4)是直线y = 2x与双曲线y = 的一个交点;

命题3:点(3,9)是直线y = 3x与双曲线y = 的一个交点;

     … … .

请观察上面命题,猜想出命题(是正整数)为:                                      .

 

查看答案和解析>>

同步练习册答案