精英家教网 > 高中数学 > 题目详情

在△中,角所对的边长分别为

(1)若,求的值;
(2)若,求的取值范围.

(1);(2)

解析试题分析:(1)已知两边,要求第三边,最好能求出已知两边的夹角,然后用余弦定理可求得,而由已知条件可得,从而可知,即,问题得解;(2)这是三角函数的一般性问题,解决它的一般方法是把函数化为的形式,然后利用正弦函数的知识解决问题,,首先用二倍角公式,降幂公式把二次式化为一次式
,再利用两角和的正弦公式把两个三角函数化为一个三角函数,,接下来我们只要把作为一个整体,求出它的范围,就可借助于正弦函数求出的取值范围了.
试题解析:(1)在△中,
所以,所以.      3分
由余弦定理,得
解得.      6分
(2)
.      9分
由(1)得,所以
.
.∴.
的取值范围是.      12分
考点:(1)余弦定理;(2)二倍角公式与降幂公式,三角函数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,角对的边分别为,已知.
(1)若,求的取值范围;
(2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的内角ABC所对的边长分别为abc,且
(1)求角A的大小;
(2)若角边上的中线AM的长为,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,已知.求:
(1)AB的值;(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,角所对的边分别为,且满足
(1)求角
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)在中,若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数 图象的一个对称中心,且a=4,求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角的对边分别为,且
(1)求角的大小;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.

查看答案和解析>>

同步练习册答案