精英家教网 > 高中数学 > 题目详情
已知a∈R,且以下命题都为真命题:
命题p:实系数一元二次方程x2+ax+2=0的两根都是虚数;
命题q:存在复数z同时满足|z|=2且|z+a|=1.
求实数a的取值范围.
分析:x2+ax+2=0的两根都是虚数,说明该方程在实数范围内无实根,复数模通常考虑其几何意义解题.
解答:解:由命题p为真,可得△=a2-8<0?a∈(-2
2
,2
2
)

又x2+y2=4表示以(0,0)为圆心,以2为半径的圆;
而(x+a)2+y2=1是以(-a,0)为圆心,以1为半径的圆.
由命题q为真,可知复平面上的圆x2+y2=4和圆(x+a)2+y2=1有公共交点,
所以,实数a∈[-3,-1]∪[1,3],
故两个命题同时为真的实数的取值范围是a∈(-2
2
,-1]∪[1,2
2
)
点评:实系数一元二次方程ax2+bx+c=0的两根都是虚数时,则方程无实根,即判别式△<0.注意端点值的取舍.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,且α≠kπ+
π
2
,k∈Z设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①l的倾斜角为arctan(tanα);
②l的方向向量与向量
a
=(cosα,sinα)
共线;
③l与直线xsinα-ycosα+n=0(n≠m)一定平行;
④若0<a<
π
4
,则l与y=x直线的夹角为
π
4

⑤若α≠kπ+
π
4
,k∈Z,与l关于直线y=x对称的直线l'与l互相垂直.
其中真命题的编号是
②④
②④
(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知a∈R,且α≠kπ+
π
2
,k∈Z设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①l的倾斜角为arctan(tanα);
②l的方向向量与向量
a
=(cosα,sinα)
共线;
③l与直线xsinα-ycosα+n=0(n≠m)一定平行;
④若0<a<
π
4
,则l与y=x直线的夹角为
π
4

⑤若α≠kπ+
π
4
,k∈Z,与l关于直线y=x对称的直线l'与l互相垂直.
其中真命题的编号是______(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a∈R,且以下命题都为真命题:
命题p:实系数一元二次方程x2+ax+2=0的两根都是虚数;
命题q:存在复数z同时满足|z|=2且|z+a|=1.
求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区高考数学二模试卷 (文科)(解析版) 题型:解答题

已知a∈R,且以下命题都为真命题:
命题p:实系数一元二次方程x2+ax+2=0的两根都是虚数;
命题q:存在复数z同时满足|z|=2且|z+a|=1.
求实数a的取值范围.

查看答案和解析>>

同步练习册答案