精英家教网 > 高中数学 > 题目详情
已知函数,且其导函数的图像过原点.
(1)当时,求函数的图像在处的切线方程;
(2)若存在,使得,求的最大值;
(1) (2)-7
本试题主要是考查了导数在研究函数中的运用。
(1)根据导数的计算,以及导函数过原点,且在a=1的情况下,分析得到结论。
(2)对于参数a进行讨论,分析要是导函数在-9时,方程有解。,对于a分为几种情况分别说明,a>0,a<0,a=0。
解: ,
得 ,. ---------------------2分
(1) 当时, ,,
所以函数的图像在处的切线方程为,即------------4分
(2) 存在,使得,

当且仅当时,所以的最大值为. -----------------9分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数
(Ⅰ)求的最小值;
(Ⅱ)若上为单调增函数,求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中
(1)当时,判断函数在定义域上的单调性;
(2)求的极值点;
(3)证明对任意的正整数,不等式都成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,则不等式f(x)·g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)
B.(-3,0)∪ (0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的导函数是,则函数
的单调递减区间是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为奇函数,
(1)求实数a的值。
(2)若上恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递减区间是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数, 函数f(x)=x3-x2-x+a.
(1)求f(x)的极值;
(2)若曲线y=f(x)与x轴仅有一个交点, 求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数,定义的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数有实数解,点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则,
其中正确命题的序号为__          _____(把所有正确命题的序号都填上).

查看答案和解析>>

同步练习册答案