19£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Á½¸ö¶¥µã·Ö±ðΪA£¨-a£¬0£©£¬B£¨a£¬0£©£¬µãM£¨-1£¬0£©£¬ÇÒ3$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬¹ýµãMбÂÊΪk£¨k¡Ù0£©µÄÖ±Ïß½»ÍÖÔ²EÓÚC£¬DÁ½µã£¬ÆäÖеãCÔÚxÖáÉÏ·½£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôBC¡ÍCD£¬ÇókµÄÖµ£»
£¨3£©¼ÇÖ±ÏßAD£¬BCµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇóÖ¤£º$\frac{{k}_{1}}{{k}_{2}}$Ϊ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉ3$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬µÃa ¼´¿É£»
£¨2£©ÉèµãCµÄ×ø±êΪ£¨x0£¬y0£©£¬y0£¾0£¬ÓÉBC¡ÍCD£¬µÃ£¨-1-x0£©£¨ 2-x0£©+y02=0£®½âµÃx0=-$\frac{2}{3}$£¬y0=$\frac{2\sqrt{2}}{3}$£¬¼´¿É£®
£¨3£©£¬ÉèC£¨x0£¬y0£©£¬ÔòCD£ºy=$\frac{{y}_{0}}{{x}_{0}+1}$£¨x+1£©£¨-2£¼x0£¼2ÇÒx0¡Ù-1£©£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{y0}{x0+1}£¨x+1£©\\ \frac{x2}{4}+y2=1\end{array}$ÏûÈ¥y£¬µÃx2+8y02x+4y02-4£¨x0+1£©2=0£¬µÃD£¨$\frac{-8-5{x}_{0}}{5+2{x}_{0}}$£¬$\frac{-3{y}_{0}}{5+2{x}_{0}}$£©£¬¿ÉÇó$\frac{{k}_{1}}{{k}_{2}}$

½â´ð ½â£º£¨1£©ÒòΪ3$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬ËùÒÔ3£¨-1+a£¬0£©=£¨a+1£¬0£©£¬½âµÃa=2£®              ¡­£¨2·Ö£©
ÓÖÒòΪ$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ËùÒÔc=$\sqrt{3}$£¬ËùÒÔb2=a2-c2=1£¬
ËùÒÔÍÖÔ²EµÄ·½³ÌΪ$\frac{x2}{4}$+y2=1£®                        ¡­£¨4·Ö£©
£¨2£©ÉèµãCµÄ×ø±êΪ£¨x0£¬y0£©£¬y0£¾0£¬
Ôò$\overrightarrow{CM}$=£¨-1-x0£¬-y0£©£¬$\overrightarrow{CB}$=£¨2-x0£¬-y0£©£®
ÒòΪBC¡ÍCD£¬ËùÒÔ£¨-1-x0£©£¨ 2-x0£©+y02=0£® ¢Ù¡­£¨6·Ö£©
ÓÖÒòΪ$\frac{{{x}_{0}}^{2}}{4}$+y02=1£¬¢Ú
ÁªÁ¢¢Ù¢Ú£¬½âµÃx0=-$\frac{2}{3}$£¬y0=$\frac{2\sqrt{2}}{3}$£¬¡­£¨8·Ö£©
ËùÒÔk=$\frac{\frac{2\sqrt{2}}{3}}{-\frac{2}{3}+1}$=2$\sqrt{2}$£®                               ¡­£¨10·Ö£©
£¨3£©£¬ÉèC£¨x0£¬y0£©£¬ÔòCD£ºy=$\frac{{y}_{0}}{{x}_{0}+1}$£¨x+1£©£¨-2£¼x0£¼2ÇÒx0¡Ù-1£©£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{y0}{x0+1}£¨x+1£©\\ \frac{x2}{4}+y2=1\end{array}$ÏûÈ¥y£¬
µÃx2+8y02x+4y02-4£¨x0+1£©2=0£®¡­£¨12·Ö£©
ÓÖÒòΪ$\frac{{{x}_{0}}^{2}}{4}$+y02=1£¬ËùÒÔµÃD£¨$\frac{-8-5{x}_{0}}{5+2{x}_{0}}$£¬$\frac{-3{y}_{0}}{5+2{x}_{0}}$£©£¬¡­£¨14·Ö£©
ËùÒÔ$\frac{{k}_{1}}{{k}_{2}}$=$\frac{\frac{-3{y}_{0}}{5+2{y}_{0}}}{\frac{-8-5{x}_{0}}{5+2{x}_{0}}}•\frac{{x}_{0}-2}{{y}_{0}}$=$\frac{-3{y}_{0}}{-{x}_{0}+2}•\frac{{x}_{0}-2}{{y}_{0}}$=3£¬
ËùÒÔ$\frac{k1}{k2}$Ϊ¶¨Öµ£®                                ¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÍÖÔ²µÄλÖùØϵ£¬¶Ô¼ÆËãÄÜÁ¦µÄÒªÇó½Ï¸ß£¬Éè¶ø²»Çó¡¢·½³ÌµÄ˼Ïë¹á´©Õû¸ö½âÌâ¹ý³Ì£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=a£¨x+a£©£¨x-a+3£©£¬g£¨x£©=2x+2-1£¬Èô¶ÔÈÎÒâx¡ÊR£¬f£¨x£©£¾0ºÍg£¨x£©£¾0ÖÁÉÙÓÐÒ»¸ö³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬2£©B£®£¨2£¬3£©C£®£¨-2£¬-1£©¡È£¨1£¬+¡Þ£©D£®£¨0£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¡÷ABCÖУ¬DÔÚACÉÏ£¬ÇÒ$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{DC}$£¬PÊÇBDÉϵĵ㣬$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{2}{9}\overrightarrow{AC}$£¬ÔòmµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{1}{4}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬µã£¨4£¬3£©µ½Ö±Ïß3x-4y+a=0µÄ¾àÀëΪ1£¬ÔòʵÊýaµÄÖµÊÇ¡À5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÓÐÏÂÁÐÃüÌ⣺
¢Ù¡°m£¾0¡±ÊÇ¡°·½³Ìx2+my2=1±íʾÍÖÔ²¡±µÄ³äÒªÌõ¼þ£»
¢Ú¡°a=1¡±ÊÇ¡°Ö±Ïßl1£ºax+y-1=0ÓëÖ±Ïßl2£ºx+ay-2=0ƽÐС±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢Û¡°º¯Êýf £¨x£©=x3+mxµ¥µ÷µÝÔö¡±ÊÇ¡°m£¾0¡±µÄ³äÒªÌõ¼þ£»
¢ÜÒÑÖªp£¬qÊÇÁ½¸ö²»µÈ¼ÛÃüÌ⣬Ôò¡°p»òqÊÇÕæÃüÌ⡱ÊÇ¡°pÇÒqÊÇÕæÃüÌ⡱µÄ±ØÒª²»³ä·ÖÌõ¼þ£®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊǢڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}+rcos¦È}\\{y=\frac{\sqrt{2}}{2}+rsin¦È}\end{array}$£¨¦ÈΪ²ÎÊý£¬r£¾0£©£¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ²¢È¡ÏàͬµÄ³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóÔ²Ðĵļ«×ø±ê£»
£¨2£©ÈôÔ²CÉϵĵ㵽ֱÏßlµÄ×î´ó¾àÀëΪ2$\sqrt{2}$£¬ÇórµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª¾ØÕóM=$[\begin{array}{l}{3}&{0}\\{0}&{1}\end{array}]$£¬N=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$£¬Ôò¾ØÕóMNµÄÄæ¾ØÕóÊÇ$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{2}\end{array}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{xn}Âú×ã${x}_{1}=\frac{1}{2}$£¬ÇÒ${x}_{n+1}=\frac{{x}_{n}}{2-{x}_{n}}£¨n¡Ê{N}^{+}£©$
£¨1£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º0£¼xn£¼1£»
£¨2£©Éè${a}_{n}=\frac{1}{{x}_{n}}$£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺
£¨1£©$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8-{5^{{{log}_5}3}}$
£¨2£©${0.064^{-\frac{1}{3}}}-{£¨{-\frac{1}{8}}£©^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}+2{log_3}6-{log_3}12$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸