·ÖÎö £¨1£©ÓÉ3$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬µÃa ¼´¿É£»
£¨2£©ÉèµãCµÄ×ø±êΪ£¨x0£¬y0£©£¬y0£¾0£¬ÓÉBC¡ÍCD£¬µÃ£¨-1-x0£©£¨ 2-x0£©+y02=0£®½âµÃx0=-$\frac{2}{3}$£¬y0=$\frac{2\sqrt{2}}{3}$£¬¼´¿É£®
£¨3£©£¬ÉèC£¨x0£¬y0£©£¬ÔòCD£ºy=$\frac{{y}_{0}}{{x}_{0}+1}$£¨x+1£©£¨-2£¼x0£¼2ÇÒx0¡Ù-1£©£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{y0}{x0+1}£¨x+1£©\\ \frac{x2}{4}+y2=1\end{array}$ÏûÈ¥y£¬µÃx2+8y02x+4y02-4£¨x0+1£©2=0£¬µÃD£¨$\frac{-8-5{x}_{0}}{5+2{x}_{0}}$£¬$\frac{-3{y}_{0}}{5+2{x}_{0}}$£©£¬¿ÉÇó$\frac{{k}_{1}}{{k}_{2}}$
½â´ð ½â£º£¨1£©ÒòΪ3$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬ËùÒÔ3£¨-1+a£¬0£©=£¨a+1£¬0£©£¬½âµÃa=2£® ¡£¨2·Ö£©
ÓÖÒòΪ$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ËùÒÔc=$\sqrt{3}$£¬ËùÒÔb2=a2-c2=1£¬
ËùÒÔÍÖÔ²EµÄ·½³ÌΪ$\frac{x2}{4}$+y2=1£® ¡£¨4·Ö£©
£¨2£©ÉèµãCµÄ×ø±êΪ£¨x0£¬y0£©£¬y0£¾0£¬
Ôò$\overrightarrow{CM}$=£¨-1-x0£¬-y0£©£¬$\overrightarrow{CB}$=£¨2-x0£¬-y0£©£®
ÒòΪBC¡ÍCD£¬ËùÒÔ£¨-1-x0£©£¨ 2-x0£©+y02=0£® ¢Ù¡£¨6·Ö£©
ÓÖÒòΪ$\frac{{{x}_{0}}^{2}}{4}$+y02=1£¬¢Ú
ÁªÁ¢¢Ù¢Ú£¬½âµÃx0=-$\frac{2}{3}$£¬y0=$\frac{2\sqrt{2}}{3}$£¬¡£¨8·Ö£©
ËùÒÔk=$\frac{\frac{2\sqrt{2}}{3}}{-\frac{2}{3}+1}$=2$\sqrt{2}$£® ¡£¨10·Ö£©
£¨3£©£¬ÉèC£¨x0£¬y0£©£¬ÔòCD£ºy=$\frac{{y}_{0}}{{x}_{0}+1}$£¨x+1£©£¨-2£¼x0£¼2ÇÒx0¡Ù-1£©£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{y0}{x0+1}£¨x+1£©\\ \frac{x2}{4}+y2=1\end{array}$ÏûÈ¥y£¬
µÃx2+8y02x+4y02-4£¨x0+1£©2=0£®¡£¨12·Ö£©
ÓÖÒòΪ$\frac{{{x}_{0}}^{2}}{4}$+y02=1£¬ËùÒÔµÃD£¨$\frac{-8-5{x}_{0}}{5+2{x}_{0}}$£¬$\frac{-3{y}_{0}}{5+2{x}_{0}}$£©£¬¡£¨14·Ö£©
ËùÒÔ$\frac{{k}_{1}}{{k}_{2}}$=$\frac{\frac{-3{y}_{0}}{5+2{y}_{0}}}{\frac{-8-5{x}_{0}}{5+2{x}_{0}}}•\frac{{x}_{0}-2}{{y}_{0}}$=$\frac{-3{y}_{0}}{-{x}_{0}+2}•\frac{{x}_{0}-2}{{y}_{0}}$=3£¬
ËùÒÔ$\frac{k1}{k2}$Ϊ¶¨Öµ£® ¡£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÍÖÔ²µÄλÖùØϵ£¬¶Ô¼ÆËãÄÜÁ¦µÄÒªÇó½Ï¸ß£¬Éè¶ø²»Çó¡¢·½³ÌµÄ˼Ïë¹á´©Õû¸ö½âÌâ¹ý³Ì£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨1£¬2£© | B£® | £¨2£¬3£© | C£® | £¨-2£¬-1£©¡È£¨1£¬+¡Þ£© | D£® | £¨0£¬2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{3}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{1}{4}$ | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com