精英家教网 > 高中数学 > 题目详情

【题目】给定椭圆,称圆为椭圆的“伴随圆”.已知点是椭圆上的点

(1)若过点的直线与椭圆有且只有一个公共点,求被椭圆的伴随圆所截得的弦长:

(2)是椭圆上的两点,设是直线的斜率,且满足,试问:直线是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。

【答案】(1) (2)过原点

【解析】试题分析:(1)分析直线的斜率是否存在,若不存在不符合题意,当存在时设直线,根据直线与圆的关系中弦心距,半径,半弦长构成的直角三角形求解即可;(2)设直线的方程分别为,设点,联立得得同理,计算,同理因为,可得,从而可证.

试题解析:

(1)因为点是椭圆上的点.

即椭圆

伴随圆同理,计算

当直线的斜率不存在时:显然不满足与椭圆有且只有一个公共点

当直接的斜率存在时:设直线与椭圆联立得

由直线与椭圆有且只有一个公共点得

解得,由对称性取直线

圆心到直线的距离为

直线被椭圆的伴随圆所截得的弦长

(2)设直线的方程分别为

设点

联立

同理

斜率

同理因为

所以 三点共线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, , .

(Ⅰ)求证:平面平面

(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在上的函数,

其中,设两曲线有公共点,且在公共点处的切线相同

(Ⅰ)若,求的值;

表示,并求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形, 平面

(1)求证: 平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知极坐标系的极点在直角坐标系的原点处,极轴与轴的非负半轴重合,直线的参数方程为为参数),曲线的极坐标方程为.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设 分别是直线与曲线上的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,点在椭圆上,且离心率为

(1)求椭圆的方程;

(2)若的角平分线所在的直线与椭圆的另一个交点为为椭圆上的一点,当面积最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点,为顶点的三角形的周长为.

(1)求椭圆的标准方程;

(2)设该椭圆轴的交点为, (点位于点的上方),直线与椭圆相交于不同的两点 ,求证:直线与直线的交点在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, ,平面 平面 .

(1)求证:

(2)是否存在点,到四棱锥各顶点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高中男生身高统计调查数据显示:全省名男生的身高服从正态分布,现从该生某校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成组:第一组,第二组,…,第六组,下图是按照上述分组方法得到的频率分布直方图.

(1)求该学校高三年级男生的平均身高;

(2)求这名男生中身高在以上(含)的人数;

(3)从这名男生中身高在以上(含)的人中任意抽取人,该中身高排名(从高到低)在全省前名的人数记为,求的数学期望.

(附:参考数据:若服从正态分布,则 .)

查看答案和解析>>

同步练习册答案