精英家教网 > 高中数学 > 题目详情
已知各项都不相等的等数列{an}的前六项和为60,且a6为a1与a21的等比中项.
(1)求数列{an}的通项公式及an及前n项和Sn
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{
1bn
}
的前n项和Tn
分析:(1)设等差数列{an}的公差为d,由题意建立方程组,求得d和a1,根据等差数列的通项公式和求和公式,分别求得an及前n项和Sn
(2)由(1)中的an和Sn,根据迭代法得:bn=(bn-bn-1)+(bn-1-bn-2)+…(b2-b1)+b1,结合条件化简后求得bn,再利用裂项法求得
1
bn
,代入前n项和Tn再相消后化简即可.
解答:解:(1)设等差数列{an}的公差为d,
6a1+15d=60,
a1(a1+20d)=(a1+5d)2
,解得
d=2
a1=5
…(4分)
∴an=2n+3…(5分)
Sn=
n(5+2n+3)
2
=n(n+4)
…(7分)
(2)由(1)得,an=2n+3,且Sn=n(n+4),
∵bn+1-bn=an,∴bn-bn-1=an-1=2n+1(n≥2,n∈N*)
当n≥2时,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=an-1+an-2+…+a1+b1=Sn-1+b1
=(n-1)(n-1+4)+3=n(n+2),
对b1=3也适合,∴bn=n(n+2)(n∈N*),
1
bn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
…(11分)
Tn=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)

=
1
2
(
3
2
-
1
n+1
-
1
n+2
)
=
3n2+5n
4(n+1)(n+2)
…(12分)
点评:本题主要考查等差数列的通项公式和求和公式,以及迭代法求数列的通项,裂项法求和,注意由数列的通项公式的特点来确定数列求和的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项都不相等的等差数列{an}的前6项和为60,且a6为a1和a21的等比中项,求数列{an}的通项an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项.
(1)求数列{an}的通项公式
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{
1bn
}
的前n项Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项都不相等的等差数列{an}的前6项和为60,且A6为a1和a21的等比中项.
(1)求数列{an}的通项公式an及前n项和Sn
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{
1bn-n
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项.
(I)求数列{an}的通项公式an
(II)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{bn}的通项公式bn
(III)求数列{
1bn-n
}的前n项和Tn

查看答案和解析>>

同步练习册答案