精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l经过点P(2,0),其倾斜角为,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为

Ⅰ)若直线l与曲线C有公共点,求倾斜角的取值范围;

Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.

【答案】(Ⅰ) ;(Ⅱ) .

【解析】试题分析

将曲线C的极坐标方程化为直角坐标方程,设出直线l的方程,根据圆心到直线的距离小于半径得到直线斜率的范围,从而可得倾斜角的取值范围()由题意得到曲线C的参数方程,故可将的范围问题化为三角函数的值域的问题求解

试题解析:

() 曲线C的极坐标方程即为

∴曲线C的直角坐标方程为,即

∴曲线C是圆心为C(2, 0),半径为2的圆

∵直线l过点P(2,0)

l的斜率存在时,直线l与曲线C才有公共点

设直线l的方程为,即

∵直线l与圆有公共点,

∴圆心C到直线l的距离

解得

.

的取值范围是

()()曲线C的直角坐标方程为

故其参数方程为 为参数)

M(x,y)为曲线C上任意一点,

所以的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=3,且an+1﹣3an=3n,(n∈N*),数列{bn}满足bn=3﹣nan

(1)求证:数列{bn}是等差数列;

(2)设,求满足不等式的所有正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面.

1)求证 平面

2是棱长上的一点,若二面角的正弦值为的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:

AFGC

BDGC成异面直线且夹角为60

BDMN

BG与平面ABCD所成的角为45.

其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)探究函数的单调性;

(Ⅱ)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱,底面为正三角形,, ,

.

(1)求异面直线所成角的余弦值;

(2)的中点,求面与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若当时,函数的图象恒在直线上方,求实数的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数, ,都有,且当时, ,若函数)在区间内恰有三个不同零点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案