精英家教网 > 高中数学 > 题目详情
19.求下列曲线的标准方程:
(1)与椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1有相同的焦点,直线y=$\sqrt{3}$x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x-4y-12=0 的抛物线的标准方程.

分析 (1)由椭圆方程求出双曲线的焦点坐标,设出以直线y=$\sqrt{3}$x为一条渐近线的双曲线方程${x}^{2}-\frac{{y}^{2}}{3}=λ$(λ>0),然后结合焦点坐标求得λ,则曲线方程可求;
(2)求出直线在两坐标轴上的截距,然后直接分类代入抛物线方程得答案.

解答 解:(1)由椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1,得a2=8,b2=4,
∴c2=a2-b2=4,则焦点坐标为F(2,0),
∵直线y=$\sqrt{3}$x为双曲线的一条渐近线,
∴设双曲线方程为${x}^{2}-\frac{{y}^{2}}{3}=λ$(λ>0),
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{3λ}=1$,则λ+3λ=4,λ=1.
∴双曲线方程为:${x}^{2}-\frac{{y}^{2}}{3}=1$;
(2)由3x-4y-12=0,得$\frac{x}{4}-\frac{y}{3}=1$,
∴直线在两坐标轴上的截距分别为(4,0),(0,-3),
∴分别以(4,0),(0,-3)为焦点的抛物线方程为:
y2=16x或x2=-12y.

点评 本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线$y=±\frac{b}{a}x$为一条渐近线的双曲线方程是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在空间直角坐标系中,平面α的法向量$\overrightarrow n=(1,2,3)$,点O(0,0,0)在平面α内,点P(1,0,-1),则点P到平面α的距离为(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{\sqrt{14}}}{14}$C.$\frac{{\sqrt{7}}}{14}$D.$\frac{{\sqrt{14}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某城市的夏季室外温度y(℃)的波动近似地按照规则$y=27+10sin({\frac{π}{12}t+π})$,其中t(h)是从某日0点开始计算的时间,且t≤24.
(1)若在t0(h)(t0≤6)时的该城市室外温度为22°C,求在t0+8(h)时的城市室外温度;
(2)某名运动员要在这个时候到该城市参加一项比赛,比赛在当天的10时至16时进行,而该运动员一旦到室外温度超过36°C的地方就会影响正常发挥,试问该运动员会不会因为气温影响而不能正常发挥?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,若$\frac{sinC}{sinA}$=3,b2-a2=$\frac{5}{2}$ac,则cosB的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率.
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X40<X<8080≤X≤120X>120
发电机最多
可运行台数
123
若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知|$\overrightarrow a|=4,|\overrightarrow b|=3,(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)若$\vec c=t\vec a+(1-t)\vec b$,且$\vec b•\vec c=0$,求$|{\vec c}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}+bx+c,x<1}\\{alnx,x≥1}\end{array}\right.$的图象过坐标原点O,且在(-1,f(-1))处
的切线的斜率是-5.
(Ⅰ)求实b、c的值;
(Ⅱ)f(x)在区[-1,2]上的最大值;
(Ⅲ)对任意给定的正实a,曲y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点y轴上?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知角α终边上一点$P({-3,b}),sinα=\frac{b}{5}$.
(1)求tanα的值;
(2)设$f(α)=\frac{{sin({{{540}°}-α})cos({{{270}°}-α})cos({{{180}°}+α})}}{{tan({{{900}°}-α})sin({{{810}°}+α})sin({-α})}}$,试求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求异面直线AD1与BD所成的角
(2)求证:C1O∥面AB1D1

查看答案和解析>>

同步练习册答案