精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+x(a,b∈R且ab≠0)的图象如图,且|x1|>|x2|,则有(  )
A、a>0,b>0
B、a<0,b<0
C、a<0,b>0
D、a>0,b<0
考点:函数的图象
专题:函数的性质及应用
分析:由图知二个零点x1,x2.从而得导函数f′(x)=3ax2+2bx+1的图象是开口向下、与x轴交于点(x1,0)、(x2,0)的抛物线,又由图得a<0,从而可以判断a,b,c的符号.
解答: 解:由图象可知:
x(-∞,x1x1(x1,x2x2(x2,+∞)
f(x)极小值极大值
f′(x)-0+0-
∴导函数f′(x)=3ax2+2bx+1的图象是开口向下、与x轴交于点(x1,0)、(x2,0)的抛物线
∴a<0,x1+x2=
2b
3a

由x1<0,x2>0,且|x1|>|x2|知:x1+x2=
2b
3a

∴b<0
故选B.
点评:本题考查函数的零点,三次函数的图象,以及利用图象解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一水渠的横截面如图所示,它的横截面曲线是抛物线形,AB宽2m,渠OC深为1.5m,水面EF距AB为0.5m.
(1)求截面图中水面宽度;
(2)如把此水渠改造成横截面是等腰梯形,要求渠深不变,不准往回填土,只准挖土,试求截面梯形的下边长为多大时,才能使所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

?x∈R,不等式-x2+2ax-(a+2)<0恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx-
3
2
(a>0),且在[0,
π
2
]上的最大值为
π-3
2

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)判断函数f(x)在(0,π)内零点个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
b2
=1(b>0)的焦距为6,则双曲线的渐近线方程为(  )
A、y=±
5
2
x
B、y=±
5
4
x
C、y=±
2
5
5
x
D、y=±
4
5
5
x

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=log
1
2
(x2-2ax+3)
,解答下述问题:
(1)若函数的定义域为R,求实数a的取值范围;
(2)若函数的值域为(-∞,-1],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=2,an+1=an+cn(c是常数),且a1,a2,a3成公比不为1的等比数列,则{an}的通项公式为(  )
A、n2+2n-1
B、n2-2n+1
C、n2+n
D、n2-n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和为Sn,首项为a1,且
1
2
,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求证:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x+x-1=3,则x3+x-3=(  )
A、8
5
B、3
5
C、18
D、±
5

查看答案和解析>>

同步练习册答案