精英家教网 > 高中数学 > 题目详情

【题目】设点的坐标分别为,动点P满足,设动点P的轨迹为,以动点P到点距离的最大值为长轴,以点为左、右焦点的椭圆为,则曲线和曲线的交点到轴的距离为_________.

【答案】

【解析】

由动点P满足,则可得到动点在以线段为弦的圆上,由圆的性质可得圆心,半径为2,则动点P到点距离的最大值为4,即可得到椭圆的方程,联立部分曲线的方程与椭圆方程求解即可

由题,因为动点P满足,则动点在以线段为弦的圆上,

因为点关于轴对称,则圆心在轴上,设圆心为,原点为,

因为,所以,则在,,所以,,则圆心,

, 曲线的方程为;当, 曲线的方程为;显然,曲线关于轴对称,

所以动点P到点距离的最大值为圆的直径,,则长轴长为4,

所以椭圆,

则曲线与曲线的图象如下图所示:

因为曲线与曲线均关于轴对称,所以可只考虑轴上方形成的交点,

即联立,消去得,,解得(舍),

故曲线和曲线的交点到轴的距离为,

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点下的距离为10.

(1)求抛物线C的方程;

(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是(  )

A. 8B. 9C. 10D. 11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,为等边三角形.

(1)求证:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标,制成下图,其中“*”表示男同学,“+”表示女同学.

,则认定该同学为“初级水平”,若,则认定该同学为“中级水平”,若,则认定该同学为“高级水平”;若,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.

(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;

(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;

(Ⅲ)试比较这100名同学中,男、女生指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的底面边长和侧棱长都为2的中点.

1)在线段上是否存在一点,使得平面平面,若存在指出点在线段上的位置,若不存在,请说明理由;

2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直角梯形中,中,分别为边上的点,且.将四边形沿折起成如图2的位置,.

(1)求证:平面

(2)求平面与平面所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,过点的直线分别与直线交于,其中点在第三象限,点在第二象限,点

1)若的面积为,求直线的方程;

2)直线交于,直线于点,若直线的斜率均存在,分别设为,判断是否为定值?若为定值,求出该定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为为参数),曲线的极坐标方程为,若曲线相交于两点.

(1)求的值;

(2)求点两点的距离之积.

查看答案和解析>>

同步练习册答案