精英家教网 > 高中数学 > 题目详情

【题目】某专卖店销售一新款服装,日销售量(单位为件)f(n) 与时间n1≤n≤30nN*)的函数关系如下图所示,其中函数f(n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.

(Ⅰ)f(n) 的表达式,及前m天的销售总数;

(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.

【答案】(Ⅰ) ,(nN*),354 件;(Ⅱ) 不超过,理由见解析.

【解析】

(I) 根据题意,设

f(1) = 2∴ 5 +a= 2,a= 3

5m+a= 3m+bb= 8m+a= 8m3

f(m) = 57m= 12

12 天的销售总量为 5 (1 + 2 + 3 + … + 12)3×12 = 354件.

(II) 13 天的销售量为f(13) = 3×13 + 93 =" 54" 件,

354 + 54 > 400 件,

从第 14 天开始销售总量超过 400 件,即开始流行.

设第x 天的日销售量开始低于 30 (12 <x≤ 30)

f(x) = 3x+ 93 < 30

解得x> 21

从第22天,日销售量开始低于 30 件,21-13=8

∴该服装流行的时间不超过10天.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在点处切线的斜率为1.

(1)求的值;

(2)设,若对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于楼市限购令的态度进行调查,随机抽调了50,他们月收入的频数分布及对楼市限购令赞成人数如表:

月收入(单位百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

()由以上统计数据填下面2×2列联表并问是否有99%的把握认为月收入以5500为分界点楼市限购令的态度有差异;

月收入低于55百元的人数

月收入不低于55百元的人数

合计

赞成

不赞成

合计

()若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3红包奖励,求收到红包奖励的3人中至少有1人收入在[15,25)的概率.

参考公式:K2,其中n=a+b+c+d.

参考数据:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点.若曲线上存在两点,使为正三角形,则称型曲线.给定下列三条曲线:

其中型曲线的个数是

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线的斜率为2,求函数的单调区间;

2)若函数在区间上有零点,求实数的取值范围.是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PAC⊥平面ABC都是正三角形, EF分别是ACBC的中点,且PDABD.

(Ⅰ)证明:直线⊥平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PAC⊥平面ABC都是正三角形, EF分别是ACBC的中点,且PDABD.

(Ⅰ)证明:直线⊥平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式为,其中.

(1)试写出一组的值,使得数列中的各项均为正数.

(2),数列满足,且对任意的(),均有,写出所有满足条件的的值.

(3),数列满足,其前项和为,且使()有且仅有组,中有至少个连续项的值相等,其它项的值均不相等,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1的侧面AA1B1B是菱形,侧面AA1C1C是矩形,平面AA1C1C⊥平面AA1B1B,∠BAA1AA1=2AC=2OAA1的中点.

1)求证:OCBC1

2)求点C1到平面ABC的距离.

查看答案和解析>>

同步练习册答案