精英家教网 > 高中数学 > 题目详情

【题目】如图在直角梯形BB1C1C中,∠CC1B1=90°,BB1∥CC1 , CC1=B1C1=2BB1=2,D是CC1的中点.四边形AA1C1C可以通过直角梯形BB1C1C以CC1为轴旋转得到,且二面角B1﹣CC1﹣A为120°.
(1)若点E是线段A1B1上的动点,求证:DE∥平面ABC;
(2)求二面角B﹣AC﹣A1的余弦值.

【答案】
(1)证明:如图所示,连接B1D,DA1

由已知可得:

∴四边形B1BDC是平行四边形,∴B1D∥BC,

而BC平面ABC,B1D平面ABC;

∴B1D∥平面ABC.

同理可得:DA1∥平面ABC.又A1D∩DB1=D,

∴平面B1DA1∥平面ABC;DE平面B1DA1

∴DE∥平面ABC.


(2)解:作C1M⊥C1B1交A1B1于点M,分别以C1M,C1B1,C1C为x轴,y轴,z轴,建立空间直角坐标系.

则C1(0,0,0),A1 ,﹣1,0),B(0,2,1),C(0,0,2),A( ,﹣1,1),

=( ,﹣1,﹣1), =(0,2,﹣1), =(0,0,2).

设平面ABC的法向量为 =(x1,y1,z1),则 ,即 ,取 =( ,1,2).

设平面A1ACC1ABC的法向量为 =(x2,y2,z2),则 ,即 ,取 =(1, ,0).

= = =

∴二面角B﹣AC﹣A1的余弦值是


【解析】(1)如图所示,连接B1D,DA1 . 由已知可得四边形B1BDC是平行四边形,B1D∥BC,可得B1D∥平面ABC.同理可得:DA1∥平面ABC.可得平面B1DA1∥平面ABC;即可证明DE∥平面ABC.(2)作C1M⊥C1B1交A1B1于点M,分别以C1M,C1B1 , C1C为x轴,y轴,z轴,建立空间直角坐标系.设平面ABC的法向量为 =(x1 , y1 , z1),则 ,可得 .设平面A1ACC1ABC的法向量为 =(x2 , y2 , z2),则 ,可得 .利用 = 即可得出.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)= ,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
参考公式与临界值表:K2=

p(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题,其中说法错误的是(
A.双曲线 的焦点到其渐近线距离为
B.若命题p:?x∈R,使得sinx+cosx≥2,则¬p:?x∈R,都有sinx+cosx<2
C.若p∧q是假命题,则p、q都是假命题
D.设a,b是互不垂直的两条异面直线,则存在唯一平面α,使得a?α,且b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+3|﹣|2x﹣a|,a∈R.
(1)若不等式f(x)≤﹣5的解集非空,求实数a的取值范围;
(2)若函数y=f(x)的图象关于点(﹣ ,0)对称,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函f(x)=sin(2x﹣ )﹣cos2x.
(Ⅰ)求函数f(x)的最小正周期、最大值及取得最大值时x的集合;
(Ⅱ)设△ABC内角A、B、C的对边分别为a、b、c,若 ,b=1, ,且a>b,求角B和角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 = ﹣…+(﹣1)n+1 ,求数列{bn}的通项公式;
(3)在(2)的条件下,设cn=2n+λbn , 问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.

查看答案和解析>>

同步练习册答案