精英家教网 > 高中数学 > 题目详情
设函数f(x)=|x2-1|+x2+kx.
(1)若k=2,求方程f(x)=0的解;
(2)若函数f(x)在(0,2)上有两个不同的零点x1,x2,求k的取值范围;并证明:
1
x1
+
1
x2
<4.
考点:函数零点的判定定理,根的存在性及根的个数判断
专题:计算题,证明题,函数的性质及应用
分析:(1)k=2时,f(x)=|x2-1|+x2+2x,从而讨论求方程f(x)=0的解;
(2)不妨设0<x1<x2<2,则化简f(x)=|x2-1|+x2+kx=
2x2+kx-1,(|x|≥1)
kx+1,(|x|<1)
;从而可确定0<x1<1≤x2<2;从而可得kx1+1=0,2x2+kx-1=0;从而求k的取值范围并证明
1
x1
+
1
x2
<4.
解答: 解:(1)k=2时,f(x)=|x2-1|+x2+2x,
当|x|≥1时,f(x)=2x2+2x-1,
由f(x)=2x2+2x-1=0得,
x=
-1-
3
2
,x=
-1+
3
2
(舍去),
当|x|<1时,f(x)=2x+1,
由2x+1=0得x=-
1
2
; 
故当k=2时,方程f(x)=0的解是x=
-1-
3
2
或x=-
1
2
.    
(2)不妨设0<x1<x2<2,
∵f(x)=|x2-1|+x2+kx=
2x2+kx-1,(|x|≥1)
kx+1,(|x|<1)
;         
若x1,x2∈[1,2),与x1x2=-
1
2
矛盾,
则0<x1<1≤x2<2;
则kx1+1=0  ①,2x2+kx-1=0  ②;
由①得:k=-
1
x1
<-1,
由②得:k=
1
x2
-
2x2∈(-
7
2
,-1]; 
∴k的取值范围是(-
7
2
,-1);                               
联立①、②消去k得:
2
x
2
2
-
1
x1
x2-1=0;
1
x1
+
1
x2
<2x2<4.
点评:本题考查了函数的性质的判断与应用,同时考查了分段函数的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线与抛物线y2=8x有公共的焦点,且双曲线的离心率为2,则该双曲线的标准方程为(  )
A、x2-
y2
3
=1
B、y2-
x2
3
=1
C、x2-
y2
9
=1
D、y2-
x2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),抛物线C:y2=-4a2x的准线与x轴的交点为A,且
AF
1=2
AF2

(Ⅰ)求P的值及椭圆C1的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图),求四边形DMEN面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域是R上的函数f(x)满足f(x+2)=2f(x),当x∈(0,2]时,f(x)=
x2-x,x∈(0,1]
-log2x,x∈(1,2]
,若x∈(-4,-2]时,f(x)≤
t
4
-
1
2t
有解,则实数t的取值范围是(  )
A、[-2,0)∪(0,1)
B、[-2,0)∪[1,+∞)
C、[-2,1]
D、(-∞,-2]∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
1
3
x3-ax2+x在(-∞,+∞)不是单调函数,则a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-3,3]上的偶函数,当x∈[0,3)时,f(x)=|x2-2x+
1
2
|,若函数y=f(x)-a在区间[-3,3]上有8个零点(互不相同),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列两个程序(1)和(2)的运行的结果i分别是(  )
A、7,7B、7,6
C、6,7D、6,6

查看答案和解析>>

科目:高中数学 来源: 题型:

某三棱锥的三视图如图所示,其正视图和侧视图都是直角三角形,则该三棱锥的体积等于(  )
A、
1
3
B、
2
3
C、1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:
日    期1月11日1月12日1月13日1月14日1月15日
平均气温x(°C)91012118
销量y(杯)2325302621
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程cq=2q-1;
(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
附:线性回归方程
y
=
b
x+
a
中,
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x
,其中
.
x
.
y
为样本平均值.

查看答案和解析>>

同步练习册答案