如图,在四棱锥中,底面为矩形,平面,,,是中点,为上一点.
(1)求证:平面;
(2)当为何值时,二面角为.
(1)详见解析;(2)
解析试题分析:(1)再由等腰三角形中线即为高线可得,由平面可得,由为矩形可得,根据线面垂直的判定定理可得平面,从而可得。再由等腰三角形中线即为高线可得,由线面垂直的判定定理可证得平面。(2)(空间向量法)以以为坐标原点,、、所在直线为,,轴建立空间直角坐标系。设。可得各点的坐标,从而可得个向量的坐标,根据向量垂直数量积为0先两个面的法向量.因为两法向量所成的角与二面角相等或互补,所以两法向量夹角的余弦值的绝对值等于。从而可得的值。
证明⑴ 因为平面,平面,
所以,因为是矩形,所以.因为,所以平面,
因为平面,所以,
因为,是中点,所以,
因为 所以平面.
⑵
解:因为平面,,
所以以为坐标原点,、、所在直线为,,轴建立空间直角坐标系,设,
则,,,.
所以,.
设平面的法向量为,则所以
令,得,,
所以.
平面的法向量为.
所以
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°
(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.
(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2014·海淀模拟)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.
(1)求证:A1B∥平面AEC1.
(2)求证:B1C⊥平面AEC1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)求二面角B1CEC1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,长方体中,,G是上的动点。
(l)求证:平面ADG;
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求证: EC⊥CD;
(2)求证:AG∥平面BDE;
(3)求:几何体EG-ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com