精英家教网 > 高中数学 > 题目详情
17.若实数a,b满足$\frac{4}{a}+\frac{1}{b}=\sqrt{ab}$,则当ab取得最小值时b的值为1.

分析 实数a,b满足$\frac{4}{a}+\frac{1}{b}=\sqrt{ab}$,利用基本不等式的性质可得:$\sqrt{ab}$≥$2\sqrt{\frac{4}{a}•\frac{1}{b}}$,当且仅当a=4b,$\frac{4}{a}+\frac{1}{b}=\sqrt{ab}$,时取等号,解出即可得出.

解答 解:∵实数a,b满足$\frac{4}{a}+\frac{1}{b}=\sqrt{ab}$,
可知:a,b>0,
∴$\sqrt{ab}$≥$2\sqrt{\frac{4}{a}•\frac{1}{b}}$,
化为ab≥4,
当且仅当a=4b,$\frac{4}{a}+\frac{1}{b}=\sqrt{ab}$,即b=1时取等号.
故答案为:1.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.2014年11月10日APEC会议在北京召开,某服务部需从大学生中招收志愿者,被招收的志愿者需参加笔试和面试两部分,把参加笔试的60名大学生按成绩分组:第1组[75,80)有3人,第2组[80,85)有21人,第3组[85,90)有18人,第4组[90,95)有12人,第5组[95,100)有6人.
(1)现决定在笔试成绩较高的第3、4、5组中用分层抽样抽取12人进行面试.则第3、4、5各组多少人?
(2)已知甲和乙的成绩均在第5组,在(1)的条件下,求甲、乙至少有1人进入面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)-mx,(0≤x≤3)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sinx-cosx-sinxcosx的最大值为$\frac{1}{2}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,正方体的棱长为a,P、Q分别为A1D、B1D1的中点
(1)求证:PQ∥平面D1C1CD
(2)求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.由棱长为2的正方体表面的六个中心为顶点构成的新几何体的体积为(  )
A.2B.4C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y).
若f(3)=1,f(a)>f(a-1)+2,则a的取值范围(1,$\frac{9}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,一座抛物线型拱桥,水面离拱顶8m,水面宽16m,如图2,一艘船的宽度为12m,船的甲板与水面距离为1m,船上两根高为a m的杆垂直于船的甲板,且到甲板左右两边的距离为2m,现船正面正对桥洞(船截面的中轴线与抛物线对称轴重合时)通过该拱桥
(1)当a=3时,该渔船是否能安全通过该拱桥?
(2)若该渔船能安全通过该拱桥,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{{2^x}}\end{array}}\right.\begin{array}{l}{(x≤0)}\\{(x>0)}\end{array}$,则满足f(x)=4的x的取值是2或$-\sqrt{3}$.

查看答案和解析>>

同步练习册答案