【题目】已知函数;
(1)当时,若,求的取值范围;
(2)若定义在上的奇函数满足,且当,,求在上的解析式;
(3)对于(2)中的,若关于的不等式在上恒成立,求实数的取值范围.
【答案】(1);(2);(3)
【解析】
(1)根据对数函数的真数部分大于0,及对数的运算性质,可将不等式化为,且且,解不等式组可得的取值范围;
(2)利用奇偶性得出,,转化得出当时,,当时,根据函数的奇偶性求解即可.
(3)关于的不等式关于的不等式在上恒成立,等价于在上恒成立,即,分类讨论后,综合讨论结果,可得实数的取值范围.
解:(1)原不等式可化为,
,且,且,
得.
(2),,
所以的周期为:4,
当时,,
当时,,
定义在上的奇函数,
,即,
当时,,
当时,,
当时,,
(3)关于的不等式在上恒成立,
记,
关于的不等式在上恒成立,
在上恒成立,
当时,,
,即解得.
当,即时,,,即满足条件;
当时,,
由在上恒成立,
得,解得.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量(单位:焦耳)与地震里氏震级之间的关系为.
(1)已知地震等级划分为里氏级,根据等级范围又分为三种类型,其中小于级的为“小地震”,介于级到级之间的为“有感地震”,大于级的为“破坏性地震”若某次地震释放能量约焦耳,试确定该次地震的类型;
(2)2008年汶川地震为里氏级,2011年日本地震为里氏级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? (取)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:y=x+4,动圆⊙O:x2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点A、B在直线l上,顶点C、D在⊙O上.当r变化时,求菱形ABCD的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某辆汽车以千米小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求时,每小时的油耗(所需要的汽油量)为升,其中为常数,且.
(1)若汽车以120千米小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求的取值范围;
(2)求该汽车行驶100千米的油耗的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线y=ax+1和抛物线y2=4x相交于不同的A,B两点.
(Ⅰ)若a=-2,求弦长|AB|;
(Ⅱ)若以AB为直径的圆经过原点O,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,(,,)的部分图像如图所示.
(1)求函数的解析式及图像的对称轴方程;
(2)把函数图像上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移个单位,得到函数的图象,求关于x的方程在时所有的实数根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】,,…,是一个数列,对每个,,.如果,两数不同,写;如果,两数相同,写.于是得到一个新数列,,…,,其中.重复上述方法,得到一个由0及1两个数字组成的三角形数表,最后一行仅一个数字,求这张数字表中1的和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】类似于平面直角坐标系,定义平面斜坐标系:设数轴、的交点为,与、轴正方向同向的单位向量分别是、,且与的夹角为,其中,由平面向量基本定理:对于平面内的向量,存在唯一有序实数对,使得,把叫做点在斜坐标系中的坐标,也叫做向量在斜坐标系中的坐标,记为,在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如时,方程表示斜坐标系内一条过点,且方向向量为的直线.
(1)若,,,求;
(2)若,已知点和直线;
①求的一个法向量;
②求点到直线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区现有一个直角梯形水产养殖区ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在点P处有一灯塔(如图),且点P到BC,CD的距离都是1200m,现拟将养殖区ACD分成两块,经过灯塔P增加一道分隔网EF,在△AEF内试验养殖一种新的水产品,当△AEF的面积最小时,对原有水产品养殖的影响最小.设AE=d.
(1)若P是EF的中点,求d的值;
(2)求对原有水产品养殖的影响最小时的d的值,并求△AEF面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com