精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2ax+数学公式+lnx.
(1)若函数f(x)在x=1,x=数学公式处取得极值,求a,b的值;
(2)若f′(1)=2,函数f(x)在(0,+∞)上,f(x)是单调函数,求a的取值范围.

解:(1)求导函数,(2分)
∵函数f(x)在x=1,x=处取得极值,
,∴,∴. (4分)
(2)函数f(x)的定义域是(0,+∞),
因为f'(1)=2,所以b=2a-1. (5分)
所以 (7分)
要使f(x)在(0,+∞)上是单调函数,只要f'(x)≥0或f'(x)≤0在(0,+∞)上恒成立.
当a=0时,恒成立,所以f(x)在(0,+∞)上是单调函数; (9分)
当a<0时,令f'(x)=0,得x1=-1,
此时f(x)在(0,+∞)上不是单调函数; (10分)
当a>0时,要使f(x)在(0,+∞)上是单调函数,只要1-2a≥0,即
综上所述,a的取值范围是. (12分)
分析:(1)求导函数,根据函数f(x)在x=1,x=处取得极值,建立方程组,即可求a,b的值;
(2)函数f(x)的定义域是(0,+∞),由f'(1)=2,可得b=2a-1,求导函数,要使f(x)在(0,+∞)上是单调函数,只要f'(x)≥0或f'(x)≤0在(0,+∞)上恒成立,由此可得a的取值范围.
点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案