【题目】已知圆与抛物线:的准线交于,两点,且.
(1)求抛物线的方程;
(2)若直线:与曲线交于,两点,且曲线上存在两点,关于直线对称,求实数的取值范围及的取值范围.
【答案】(1);(2)实数的取值范围为,的取值范围是
【解析】
(1)设圆心到准线的距离为,求得,再结合圆的弦长公式,求得,即可得到抛物线的方程;
(2)联立方程组,根据,解得,且,,求得,设直线方程为,联立方程组,求得,求得的表达式,即可求解.
(1)由题意,圆的半径,圆心为,,
设圆心到准线的距离为,则,
又由,可得,
故抛物线的方程为.
(2)联立方程组,可得,
因为直线与曲线交与,两点,所以,解得,①
设,,则,,
所以,
因为点,关于直线对称,设直线方程为,
直线与,联立得,
由,得,
设,,中点,则,,
因为点也在直线上,所以,
所以,代入得,②
由①②得,实数的取值范围为.
又因为,
所以.
因为,所以,所以,
所以的取值范围是.
科目:高中数学 来源: 题型:
【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了如图的散点图.
温度/℃ | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数/个 | 6 | 10 | 22 | 26 | 64 | 118 | 310 |
26 | 79.4 | 3.58 | 112 | 11.6 | 2340 | 35.72 |
其中.
(1)根据散点图判断,与哪一个更适宜作为该昆虫的产卵数与温度的回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,建立关于的回归方程;(保留两位有效数字)
(3)根据关于的回归方程,估计温度为33℃时的产卵数.
(参考数据:)
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.
(I)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(II)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
非手机迷 | 手机迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:随机变量(其中为样本总量).
参考数据 | 0.15 | 0.10 | 0.05 | 0.025 | |
span>2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数满足以下三个条件:①对于任意的,都有;②对于任意的都有③函数的图象关于y轴对称,则下列结论中正确的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近期,西安公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表下所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与(均为大于零的常数),哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表1中的数据,建立与的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:
西安公交六公司车队为缓解周边居民出行压力,以万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为万元.已知该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.预计该车队每辆车每个月有万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要()年才能开始盈利,求的值.
参考数据:
其中其中,,
参考公式:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若函数在区间(为自然对数的底数)上有唯一的零点,求实数的取值范围;
(2)若在(为自然对数的底数)上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小姜同学有两个盒子和,最初盒子有6枚硬币,盒子是空的.在每一回合中,她可以将一枚硬币从盒移到盒,或者从盒移走枚硬币,其中是盒中当前的硬币数.当盒空时她获胜.则小姜可以获胜的最少回合是( )
A.三回合B.四回合C.五回合D.六回合
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com