精英家教网 > 高中数学 > 题目详情
19.如图,已知正四棱锥V-ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=2$\sqrt{2}$,VC=$\sqrt{3}$.
(1)求正四棱锥V-ABCD的体积.
(2)求正四棱锥V-ABCD的表面积.

分析 (1)分别求正四棱锥棱锥的底面积和高即可求体积.
(2)求出斜高,即可求正四棱锥V-ABCD的表面积.

解答 解:(1)∵正四棱锥V-ABCD中,底面ABCD是正方形,且对角线AC=2$\sqrt{2}$,VC=$\sqrt{3}$,VM是棱锥的高
∴AB=2,VM=1
∴正四棱锥V-ABCD的体积为V=$\frac{1}{3}$×SABCD×VM=$\frac{1}{3}$×2×2×1=$\frac{4}{3}$;
(2)斜高=$\sqrt{1+1}$=$\sqrt{2}$,
∴正四棱锥V-ABCD的表面积2×2+$4×\frac{1}{2}×2×\sqrt{2}$=4+4$\sqrt{2}$.

点评 本题考查求正四棱锥V-ABCD的表面积、体积.关键是求底面积和高,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,几何体ABCDEF中,四边形ABEF为矩形,ABCD为梯形,平面ABEF⊥平面ABCD,AB∥CD,AB=4,AF=AD=CD=2,AD⊥BD,O为AB的中点.
(1)证明:AD⊥平面BDE;
(2)在线段DE上是否存在点N,使得ON∥平面ADF?说明理由;
(3)求点C到平面BDF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱锥P-ABC中,BC⊥平面PAB.PA=PB=AB=BC=6,点M,N分别为PB,BC的中点.
(Ⅰ)求证:AM⊥平面PBC;
(Ⅱ)E在线段AC上的点,且AM∥平面PNE.
①确定点E的位置;
②求直线PE与平面PAB所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx,g(x)=xe-x
(1)当x∈R时,求函数f(x)的单调递减区间;
(2)若对任意x1∈[1,3],x2∈[0,$\frac{π}{2}$],不等式g(x1)+a+3>f(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学高二年级举行数学竞赛,共有800名学生参加.为了了解本次竞赛成绩,从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计.请你根据频率分布表,解答下列问题:
(1)填充下列频率分布表中的空格;
(2)估计众数、中位数和平均数;
(3)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
 分组(分数)频数频率
[60,70)0.12
[70,80)20
[80,90)0.24
[90,100]12
 合计501

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为常数,函数f(x)=xlnx-$\frac{1}{2}$ax2
(1)当a=0时,求函数f(x)的最小值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求实数a的取值范围;
②求证:x1x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列叙述正确的个数是(  )
①若p∧q为假命题,则p、q均为假命题;
②若命题p:?x0∈R,x02-x0+1≤0,则¬p:?x∈R,x2-x+1>0;
③在△ABC中“∠A=60°”是“cosA=$\frac{1}{2}$”的充要条件;
④若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$<0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图是一个几何体的三视图,该几何体的体积是30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B={2,3}.

查看答案和解析>>

同步练习册答案