精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,PA=AD,E、F分别是棱PD、BC的中点.
(1)求证:EF∥平面PAB;
(2)求直线PF与平面PAC所成角的正弦值.

分析 (1)取PA的中点G,连接BG,GE,证明四边形BFEG是平行四边形,即可证明EF∥平面PAB;
(2)以AB,AD,AP分别为x轴,y轴,z轴建立如图所示的平面直角坐标系,求出平面PAC的法向量,即可求直线PF与平面PAC所成角的正弦值.

解答 (1)证明:取PA的中点G,连接BG,GE,
∵E为PD的中点,
∴GE∥AD且$GE=\frac{1}{2}AD$
又底面ABCD是正方形,F为BC的中点,∴BF∥AD且$BF=\frac{1}{2}AD$,
∴GE∥BF且GE=BF,∴四边形BFEG是平行四边形,
∴EF∥BG,
又EF?平面PAB,BG?平面PAB,∴EF∥平面PAB…(5分)
(2)解:以AB,AD,AP分别为x轴,y轴,z轴建立如图所示的平面直角坐标系,
设PA=AD=2,直线PF与平面PAC所成角为θ,
P(0,0,2),F(2,1,0),$\overrightarrow{PF}=(2,1,-2)$,A(0,0,0),C(2,2,0),$\overrightarrow{AP}=(0,0,2)$,$\overrightarrow{AC}=(2,2,0)$
设平面PAC的法向量$\overrightarrow n=(x,y,z)$,
则$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{AP}=2z=0\\ \overrightarrow n•\overrightarrow{AC}=2x+2y=0\end{array}\right.$,取$\left\{\begin{array}{l}x=1\\ y=-1\\ z=0\end{array}\right.$,$\overrightarrow n=(1,-1,0)$…(8分)
sinθ=|cos<$\overrightarrow{PF}$,$\overrightarrow{n}$>|=$\frac{{\sqrt{2}}}{6}$…(10分)

点评 本题考查线面平行的判定与性质,考查线面角,考查利用向量的方法解决立体几何问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知a∈R,直线l1:(2a+1)x+2y-a+2=0与直线l2:2x-3ay-3a-5=0垂直.
(1)求a的值;
(2)求以l1,l2的交点为圆心,且与直线3x-4y+9=0相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标系方程为x2+y2+2x-2y=0,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+t}\\{y=t}\end{array}\right.$(t为参数),射线OM的极坐标方程为θ=$\frac{3π}{4}$
(Ⅰ)求圆C和直线l的极坐标方程
(Ⅱ)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1,CC1=2,则异面直线A1B与AC所成角的余弦值是$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2+2x+3在自变量x从1变化到3的过程中的平均变化率是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=asinx,g(x)=lnx,其中a∈R,y=g-1(x)是y=g(x)的反函数.
(1)若0<a≤1,证明:函数G(x)=f(1-x)+g(x)在区间(0,1)上是增函数;
(2)证明:$\sum_{i=1}^{n}$sin$\frac{1}{(1+k)^{2}}$<ln2;
(3)设F(x)=g-1(x)-mx2-2(x+1)+b,若对任意的x>0,m<0有F(x)>0恒成立,求满足条件的最小整数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线3x-4y-12=0与两条坐标轴分别交于点A,B,O为坐标原点,则△ABO的面积等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|x+2|+|6-x|≥k恒成立
(1)求实数k的最大值;
(2)若实数k的最大值为n,正数a,b满足$\frac{8}{5a+b}+\frac{2}{2a+3b}=n$,求7a+4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,复数z满足$3z+\overline z=\frac{4}{1-i}$,则z=(  )
A.$\frac{1}{4}+\frac{1}{2}i$B.$\frac{1}{2}+i$C.$\frac{1}{4}-\frac{1}{2}i$D.$\frac{1}{2}-i$

查看答案和解析>>

同步练习册答案