分析 作函数y=|sinx|与y=kx的图象,从而可得x0∈(π,2π),y0=-sinx0,y′=-cosx,从而可得x0=$\frac{sin{x}_{0}}{cos{x}_{0}}$,从而化简即可.
解答 解:作函数y=|sinx|与y=kx的图象如下,
结合图象可知,x0∈(π,2π),
此时,y0=-sinx0,y′=-cosx,
故$\frac{-sin{x}_{0}}{{x}_{0}}$=-cosx0,故x0=$\frac{sin{x}_{0}}{cos{x}_{0}}$,
故$\frac{{x}_{0}}{(1+{{x}_{0}}^{2})sin2{x}_{0}}$=$\frac{\frac{sin{x}_{0}}{cos{x}_{0}}}{(1+\frac{{sin}^{2}{x}_{0}}{co{s}^{2}{x}_{0}})sin2{x}_{0}}$
=$\frac{sin{x}_{0}cos{x}_{0}}{sin2{x}_{0}}$=$\frac{1}{2}$;
故答案为:$\frac{1}{2}$.
点评 本题考查了数形结合的思想应用及导数的综合应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x2-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{2}$-y2=1 | C. | y2-$\frac{{x}^{2}}{2}$=1 | D. | $\frac{{y}^{2}}{2}$-x2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -π | B. | -$\frac{π}{2}$ | C. | -$\frac{π}{4}$ | D. | -$\frac{π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com