精英家教网 > 高中数学 > 题目详情

设函数f(x)=x3ax2axg(x)=2x2+4xc.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.

(1)无极值(2)-cc=-9.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求过点(2,0)且与曲线yx3相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为自然对数的底数).
(1)求函数的单调区间;
(2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)对于任意实数恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,以点为切点作函数图像的切线,直线与函数图像及切线分别相交于,记
(1)求切线的方程及数列的通项;
(2)设数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-3x.
(1)求函数f(x)的单调区间.
(2)求函数f(x)在区间[-3,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x-ax(a∈R).
(1)讨论函数f(x)的单调区间;
(2)若函数g(x)=且g(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三次函数为实常数。
(1)若时,求函数的极大、极小值;
(2)设函数,其中的导函数,若的导函数为轴有且仅有一个公共点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求抛物线y=x2上点到直线x-y-2=0的最短距离.

查看答案和解析>>

同步练习册答案