精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(1)若函数f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(2)设m,n∈(0,+∞),且m≠n,求证:$\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

分析 (1)根据f(x)的解析式求出f(x)的导函数,通分后根据函数f(x)在(1,+∞)上为单调增函数,得到分子大于0恒成立,解出2a-2小于等于一个函数关系式,利用基本不等式求出这个函数的最小值,列出关于a的不等式,求出不等式的解集即可得到a的取值范围;
(2)把所证的式子利用对数的运算法则及不等式的基本性质变形,即要证ln$\frac{m}{n}$-$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$>0,根据(1)得到h(x)在x大于等于1时单调递增,且$\frac{m}{n}$大于1,利用函数的单调性可得证.

解答 解:(1)f′(x)=$\frac{1}{x}$-$\frac{a(x+1)-a(x-1)}{{(x+1)}^{2}}$=$\frac{{x}^{2}+(2-2a)x+1}{{x(x+1)}^{2}}$,
因为f(x)在(1,+∞)上为单调增函数,所以f′(x)≥0在(1,+∞)上恒成立
即x2+(2-2a)x+1≥0在(1,+∞)上恒成立,
当x∈(1,+∞)时,由x2+(2-2a)x+1≥0,
得:2a-2≤x+$\frac{1}{x}$,
设g(x)=x+$\frac{1}{x}$,x∈(1,+∞),
则g(x)=x+$\frac{1}{x}$>2$\sqrt{x•\frac{1}{x}}$=2,
故g(x)>2,
所以2a-2≤2,解得a≤2,所以a的取值范围是(-∞,2];
(2),不妨设m>n>0,要证 $\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0,
只需证ln$\frac{m}{n}$>$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$,即ln$\frac{m}{n}$-$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$>0,
设h(x)=lnx-$\frac{2(x-1)}{x+1}$,
由(1)知h(x)在(1,+∞)上是单调增函数,
又$\frac{m}{n}$>1,
所以h($\frac{m}{n}$)>h(1)=0,
即ln$\frac{m}{n}$-$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$>0成立,
得到 $\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

点评 此题考查学生会利用导函数的正负确定函数的单调区间,掌握不等式恒成立时所满足的条件,会利用基本不等式求函数的最小值,是一道中档题.在证明第(2)时注意利用第(1)问中的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在直角坐标系中,已知圆N的圆心N(3,4),且过点A(0,4).
(1)求圆N的方程;
(2)若过点D(3,6)的直线l被圆N所截得的弦长等于$4\sqrt{2}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为$\sqrt{2}$的正方形,AA1=3,E是AA1的中点,过C1作C1F⊥平面BDE与平面ABB1A1交于点F,则$\frac{AF}{{A{A_{1}}}}$等于(  )
A.$\frac{4}{7}$B.$\frac{5}{8}$C.$\frac{5}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数$\frac{1-i}{2i+1}$(i为虚数单位)的模等于(  )
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.2D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$,则z=4x+8y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在正方体ABCD-A1B1C1D1中,与AB异面且垂直的棱共有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{x^2}$-2x,当x>2时k(x-2)<xf(x)+2g'(x)+3恒成立,则整数k最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga(ax-1)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2若函数f(x)的函数值大于1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\frac{sinα-2cosα}{3sinα+5cosα}$=2,则tanα的值为(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

同步练习册答案