精英家教网 > 高中数学 > 题目详情
3.求函数y=x3-2x2-x+2的零点,并画出它的图象.

分析 因式分解可得y=(x2-1)-2(x2-1)=(x-1)(x+1)(x-2),从而作出其图象即可.

解答 解:y=x3-2x2-x+2=x(x2-1)-2(x2-1)
=(x-1)(x+1)(x-2),
故函数y=x3-2x2-x+2的零点为-1,1,2;
作其图象如下,

点评 本题考查了因式分解的应用及函数的图象的作法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.定义在(0,+∞)上的函数f(x)满足,对于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)求f(1)、的值;
(2)证明f(x)在区间(0,+∞)上为增函数;
(2)若f(2)=1,解关于x的不等式f(x)+f(x-3)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知六边形ABCDEF的三对对边都互相平行,并且$\overrightarrow{FC}$=2$\overrightarrow{AB}$=2$\overrightarrow{DE}$,又设$\overrightarrow{AB}$=$\overrightarrow{α}$,$\overrightarrow{BC}$=$\overrightarrow{β}$,求$\overrightarrow{CE}$和$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}(x≤0)}\\{Asin\frac{πx}{4}(x>0)}\end{array}\right.$(A>0),则下列结论正确的是(  )
A.?常数T>0,使f(x+T)=f(x)
B.?A,图象上不存在关于原点中心对称的点
C.?A,f(x)存在最大值与最小值
D.?A,使f(x)在[a,b]上的值域也是[a,b]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=($\frac{1}{2}$)x,a>0,b>0,a≠b,A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),c=f($\frac{2ab}{a+b}$),则A,B,C中最大的为C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在△ABC中,若2cos(B-C)-1=6cosBcosC,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合M={x|x2-7x+10≤0},N={x|x2-(2-m)x+5-m≤0},且N⊆M,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若正数3x+4y+5z=6,则$\frac{1}{2y+z}$+$\frac{4y+2z}{x+z}$的最小值$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C1的方程为ρ=4$\sqrt{2}cos(θ-\frac{π}{4})$,圆C2的参数方程为$\left\{\begin{array}{l}x=-1+acosθ\\ y=-1+asinθ\end{array}$,(θ为参数),若圆C1与圆C2外切,则实数a=$±\sqrt{2}$.

查看答案和解析>>

同步练习册答案