15£®ÔÚÊý×Ö1£¬2£¬¡­£¬n£¨n¡Ý2£©µÄÈÎÒâÒ»¸öÅÅÁÐA£ºa1£¬a2£¬¡­£¬anÖУ¬Èç¹û¶ÔÓÚi£¬j¡ÊN*£¬i£¼j£¬ÓÐai£¾aj£¬ÄÇô¾Í³Æ£¨ai£¬aj£©ÎªÒ»¸öÄæÐò¶Ô£®¼ÇÅÅÁÐAÖÐÄæÐò¶ÔµÄ¸öÊýΪS£¨A£©£®
Èçn=4ʱ£¬ÔÚÅÅÁÐB£º3£¬2£¬4£¬1ÖУ¬ÄæÐò¶ÔÓУ¨3£¬2£©£¬£¨3£¬1£©£¬£¨2£¬1£©£¬£¨4£¬1£©£¬ÔòS£¨B£©=4£®
£¨¢ñ£©ÉèÅÅÁРC£º3£¬5£¬6£¬4£¬1£¬2£¬Ð´³öS£¨C£©µÄÖµ£»
£¨¢ò£©¶ÔÓÚÊý×Ö1£¬2£¬¡­£¬nµÄÒ»ÇÐÅÅÁÐA£¬ÇóËùÓÐS£¨A£©µÄËãÊõƽ¾ùÖµ£»
£¨¢ó£©Èç¹û°ÑÅÅÁÐA£ºa1£¬a2£¬¡­£¬anÖÐÁ½¸öÊý×Öai£¬aj£¨i£¼j£©½»»»Î»Ö㬶øÆäÓàÊý×ÖµÄλÖñ£³Ö²»±ä£¬ÄÇô¾ÍµÃµ½Ò»¸öеÄÅÅÁÐA'£ºb1£¬b2£¬¡­£¬bn£¬ÇóÖ¤£ºS£¨A£©+S£¨A'£©ÎªÆæÊý£®

·ÖÎö £¨¢ñ£©ÓÉÄæÐò¶ÔµÄ¶¨Ò壬Áоټ´¿ÉµÃµ½ËùÇóֵΪ10£»
£¨¢ò£©¿¼²ìÅÅÁÐD£ºd1£¬d2£¬¡­£¬dn-1£¬dn£¬ÔËÓÃ×éºÏÊý¿ÉµÃÅÅÁÐDÖÐÊý¶Ô£¨di£¬dj£©¹²ÓÐ$C_n^2=\frac{n£¨n-1£©}{2}$¸ö£¬¼´¿ÉµÃµ½ËùÓÐS£¨A£©µÄËãÊõƽ¾ùÖµ£»
£¨¢ó£©ÌÖÂÛ£¨1£©µ±j=i+1£¬¼´ai£¬ajÏàÁÚʱ£¬£¨2£©µ±j¡Ùi+1£¬¼´ai£¬aj²»ÏàÁÚʱ£¬ÓÉж¨Ò壬ÔËÓõ÷Õû·¨£¬¿ÉµÃS£¨A£©+S£¨A'£©ÎªÆæÊý£®

½â´ð ½â£º£¨¢ñ£©ÄæÐò¶ÔÓУ¨3£¬1£©£¬£¨3£¬2£©£¬£¨5£¬4£©£¬£¨5£¬1£©£¬£¨5£¬2£©£¬£¨4£¬1£©£¬£¨4£¬2£©£¬
£¨6£¬4£©£¬£¨6£¬1£©£¬£¨6£¬2£©ÔòS£¨C£©=10£»                                             
£¨¢ò£©¿¼²ìÅÅÁÐD£ºd1£¬d2£¬¡­£¬dn-1£¬dnÓëÅÅÁÐD1£ºdn£¬dn-1£¬¡­£¬d2£¬d1£¬
ÒòΪÊý¶Ô£¨di£¬dj£©Ó루dj£¬di£©ÖбØÓÐÒ»¸öΪÄæÐò¶Ô£¨ÆäÖÐ1¡Üi£¼j¡Ün£©£¬
ÇÒÅÅÁÐDÖÐÊý¶Ô£¨di£¬dj£©¹²ÓÐ$C_n^2=\frac{n£¨n-1£©}{2}$¸ö£¬
ËùÒÔ$S£¨D£©+S£¨{D_1}£©=\frac{n£¨n-1£©}{2}$£®
ËùÒÔÅÅÁÐDÓëD1µÄÄæÐò¶ÔµÄ¸öÊýµÄËãÊõƽ¾ùֵΪ$\frac{n£¨n-1£©}{4}$£®
¶ø¶ÔÓÚÊý×Ö1£¬2£¬¡­£¬nµÄÈÎÒâÒ»¸öÅÅÁÐA£ºa1£¬a2£¬¡­£¬an£¬
¶¼¿ÉÒÔ¹¹ÔìÅÅÁÐA1£ºan£¬an-1£¬¡­£¬a2£¬a1£¬
ÇÒÕâÁ½¸öÅÅÁеÄÄæÐò¶ÔµÄ¸öÊýµÄËãÊõƽ¾ùֵΪ$\frac{n£¨n-1£©}{4}$£®
ËùÒÔËùÓÐS£¨A£©µÄËãÊõƽ¾ùֵΪ$\frac{n£¨n-1£©}{4}$£®
£¨¢ó£©Ö¤Ã÷£º£¨1£©µ±j=i+1£¬¼´ai£¬ajÏàÁÚʱ£¬
²»·ÁÉèai£¼ai+1£¬ÔòÅÅÁÐA'Ϊa1£¬a2£¬¡­£¬ai-1£¬ai+1£¬ai£¬ai+2£¬¡­£¬an£¬
´ËʱÅÅÁÐA'ÓëÅÅÁÐA£ºa1£¬a2£¬¡­£¬anÏà±È£¬½ö¶àÁËÒ»¸öÄæÐò¶Ô£¨ai+1£¬ai£©£¬
ËùÒÔS£¨A'£©=S£¨A£©+1£¬
ËùÒÔS£¨A£©+S£¨A'£©=2S£¨A£©+1ΪÆæÊý£®
£¨2£©µ±j¡Ùi+1£¬¼´ai£¬aj²»ÏàÁÚʱ£¬
¼ÙÉèai£¬ajÖ®¼äÓÐm¸öÊý×Ö£¬¼ÇÅÅÁÐA£ºa1£¬a2£¬¡­£¬ai£¬k1£¬k2£¬¡­km£¬aj£¬¡­£¬an£¬
ÏȽ«aiÏòÓÒÒƶ¯Ò»¸öλÖ㬵õ½ÅÅÁÐA1£ºa1£¬a2£¬¡­£¬ai-1£¬k1£¬ai£¬k2£¬¡­£¬km£¬aj£¬¡­£¬an£¬
ÓÉ£¨1£©ÖªS£¨A1£©ÓëS£¨A£©µÄÆæżÐÔ²»Í¬£¬
ÔÙ½«aiÏòÓÒÒƶ¯Ò»¸öλÖ㬵õ½ÅÅÁÐA2£ºa1£¬a2£¬¡­£¬ai-1£¬k1£¬k2£¬ai£¬k3£¬¡­£¬km£¬aj£¬¡­£¬an£¬
ÓÉ£¨1£©ÖªS£¨A2£©ÓëS£¨A1£©µÄÆæżÐÔ²»Í¬£¬
ÒÔ´ËÀàÍÆ£¬ai¹²ÏòÓÒÒƶ¯m´Î£¬µÃµ½ÅÅÁÐAm£ºa1£¬a2£¬¡­£¬k1£¬k2£¬¡­£¬km£¬ai£¬aj£¬¡­£¬an£¬
ÔÙ½«ajÏò×óÒƶ¯Ò»¸öλÖ㬵õ½ÅÅÁÐAm+1£ºa1£¬a2£¬¡­£¬ai-1£¬k1£¬¡­£¬km£¬aj£¬ai£¬¡­£¬an£¬
ÒÔ´ËÀàÍÆ£¬aj¹²Ïò×óÒƶ¯m+1´Î£¬µÃµ½ÅÅÁÐA2m+1£ºa1£¬a2£¬¡­£¬aj£¬k1£¬¡­£¬km£¬ai£¬¡­£¬an£¬
¼´ÎªÅÅÁÐA'£¬
ÓÉ£¨1£©¿ÉÖª½öÓÐÏàÁÚÁ½ÊýµÄλÖ÷¢Éú±ä»¯Ê±£¬ÅÅÁеÄÄæÐò¶Ô¸öÊýµÄÆæżÐÔ·¢Éú±ä»¯£¬
¶øÅÅÁÐA¾­¹ý2m+1´ÎµÄÇ°ºóÁ½Êý½»»»Î»Ö㬿ÉÒԵõ½ÅÅÁÐA'£¬
ËùÒÔÅÅÁÐAÓëÅÅÁÐA'µÄÄæÐòÊýµÄÆæżÐÔ²»Í¬£¬
ËùÒÔS£¨A£©+S£¨A'£©ÎªÆæÊý£®
×ÛÉÏ£¬µÃS£¨A£©+S£¨A'£©ÎªÆæÊý£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éÁоٷ¨ºÍÅÅÁÐ×éºÏµÄÔËÓã¬ÔËÓ÷ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏÒ»µãÓëËüµÄ×ó¡¢ÓÒÁ½¸ö½¹µãF1£¬F2µÄ¾àÀëÖ®ºÍΪ2$\sqrt{2}$£¬ÇÒËüµÄÀëÐÄÂÊÓëË«ÇúÏßx2-y2=2µÄÀëÐÄÂÊ»¥Îªµ¹Êý£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Èçͼ£¬µãAΪÍÖÔ²ÉÏÒ»¶¯µã£¨·Ç³¤Öá¶Ëµã£©£¬AF1µÄÑÓ³¤ÏßÓëÍÖÔ²½»ÓÚµãB£¬AOµÄÑÓ³¤ÏßÓëÍÖÔ²½»ÓÚµãC£®
¢Ùµ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÇóÖ¤£ºÖ±ÏßABÓëBCµÄбÂÊÖ®»ýΪ¶¨Öµ£»
¢ÚÇó¡÷ABCÃæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱֱÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Å×ÎïÏßy=x2ÉÏÓÐÒ»µãAµÄºá×ø±êΪa£¬ÆäÖÐa¡Ê£¨0£¬1£©£¬¹ýµãAµÄÅ×ÎïÏßµÄÇÐÏßl½»xÖá¼°Ö±Ïßx=1ÓÚB£¬CÁ½µã£¬Ö±Ïßx=1½»xÖáÓÚDµã£®
£¨1£©ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©Çó¡÷BCDµÄÃæ»ýS£¨a£©£¬²¢Çó³öaΪºÎֵʱS£¨a£©ÓÐ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¼ÆË㣺£¨$\frac{8}{27}$£©${\;}^{-\frac{2}{3}}$-lg$\sqrt{2}$-lg$\sqrt{5}$=$\frac{7}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑ֪˫ÇúÏß${x^2}-\frac{y^2}{b^2}=1\;£¨b£¾0£©$µÄÒ»¸ö½¹µãÊÇ£¨2£¬0£©£¬Ôòb=$\sqrt{3}$£»Ë«ÇúÏß½¥½üÏߵķ½³ÌΪ$y=¡À\sqrt{3}x$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êý$f£¨x£©=2x+\frac{1}{x^2}$£¬Ö±Ïßl£ºy=kx-1£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©ÇóÖ¤£º¶ÔÓÚÈÎÒâk¡ÊR£¬Ö±Ïßl¶¼²»ÊÇÇúÏßy=f£¨x£©µÄÇÐÏߣ»
£¨¢ó£©ÊÔÈ·¶¨ÇúÏßy=f£¨x£©ÓëÖ±ÏßlµÄ½»µã¸öÊý£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªa¡¢b¡¢cΪ¡÷ABCµÄÈý±ß³¤£¬ÇÒ¹ØÓÚxµÄ¶þ´Î·½³Ìx2-2x+lg£¨c2-b2£©-2lga+1=0Óеȸù£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®É輯ºÏA={x|2log${\;}_{\frac{1}{2}}$2x-21log8x+3¡Ü0}£¬Èôµ±x¡ÊAʱ£¬º¯Êýf£¨x£©=log2$\frac{x}{{2}^{a}}$•log2$\frac{x}{4}$µÄ×î´óֵΪ2£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªtan£¨¦Á+¦Â£©=$\frac{2}{5}$£¬tan£¨¦Â-$\frac{¦Ð}{4}$£©=$\frac{1}{4}$£¬Ôòtan£¨¦Á+$\frac{¦Ð}{4}$£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{22}{13}$C£®$\frac{3}{22}$D£®$\frac{13}{18}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸